Related
Firstly.... go here and read this -
http://batteryuniversity.com/learn/article/charging_lithium_ion_batteries
The battery is fully charged when it is at 4.2 Volts and fully discharged at some predefined voltage (Lets say 3 volts).
The phone can measure these voltages directly from the battery. To see the voltage of your battery type *#*#4636#*#* into your phone and go to battery information.
If all that is so then what is the point or need of "recalibrating" and deleting battery stats and all that.
It seems logical to me that battery stats is just the place where your battery usage history is stored and nothing else.
Can someone confirm this or convince me otherwise?
(I rotate between 3 batteries and cannot grasp the idea that my phone can't consistently measure the charge level of the battery and operate accordingly.)
Measuring the Voltage to get the charge level is not very accurate, and has to be done with no load on the battery (that is, when its not in your phone).
So the phone has to count "energy used from"/"energy stored in" the battery for an accurate display. (called "Coloumb counter")
Did some test
I did a test on new a battery a while ago. Measure voltage when the battery completely empty and fully charged.
Empty battery
1% remaining, using SystemPanel
Take the battery out and measure it with Multimeter
Fully charged
100% charged
Again, measure it with Multimeter
The voltage showed on the phone using SystemPanel app is quite accurate with 0.04V margin of error. Most smart electronic measure lithium battery capacity according to the remaining voltage. In this case, fully charged SGS is 4.2V, empty is 3.5V.
Me too, don't know why we have to delete batterystats.bin to recalibrate battery indicator But I do know that SGS keep track on power consumption on each of its component/application. Its a little bit silly if SGS reads batterystats.bin and display it as battery indicator.
Yet again how is this android development.
Sent from my GT-I9000 using XDA App
xufos said:
I did a test on new a battery a while ago. Measure current when the battery completely empty and fully charged.
Empty battery
1% remaining, using SystemPanel
Take the battery out and measure it with Multimeter
Fully charged
100% charged
Again, measure it with Multimeter
The current showed on the phone using SystemPanel app is quite accurate with 0.04V error margin. Most smart electronic measure lithium battery capacity according to the remaining current. In this case, fully charged SGS is 4.2V, empty is 3.5V.
Me too, don't know why we have to delete batterystats.bin to recalibrate battery indicator But I do know that SGS keep track on power consumption on each of its component/application. Its a little bit silly if SGS reads batterystats.bin and display it as battery indicator.
Click to expand...
Click to collapse
Thanks for that, but you were actually measuring the Voltage, not current (Amperes).
In any case, for laptop Li-ion batteries there is normally a capacity counter (Coulomb counter) that reports the capacity in terms of mAh (milli-ampere hours). It can normally report the remaining capacity, maximum capacity, design capacity, and can be used to measure the *actual* power drain (in terms of Watts).
I wonder if Android has APIs that let apps access that kind of information?
Not really sure about this, but:
Phone seems to measure both voltage & discharge speed, "predicting" remaining charge.
It happens that after a flash battery indicator jumps to a higher value (not compatible with the couple of minutes of dc connection it had), and fall to a way too low value after any battery intensive task (a few minutes of audio call are enough), once more not compatible with the real usage.
I should inspect android code to be shure of this, but I suspect batterystats.bin is used to keep track of battery usage and to this sort of prediction, while a firmware flash seems to mess somehow the measurement.
Edit: this is based on my direct experience, even if on just "empirical" tests. I'll take a look to code asap
'mkay, battery talk... always interesting to see what people make of this.
Let's help out all the misunderstandings here and start with the basics
First of all: read the basics on Li-ion batteries:
http://electronics.howstuffworks.com/lithium-ion-battery.htm
second:
you DON'T measure your voltage when your battery is disconnected. Because it will rise to the normal values of the battery after a while. When you connect it, and use it, the voltage will lower. Compare it to a garden hose. if you let water run out, the presure drops and water starts flowing (presure is voltage, flowing is the current). If you measure the presure when there is no water running, the presure will always mount to the default value, even if there is "not much water left in the tank". But when it starts running again, it could very well run out very fast. So in comparison: voltage says something, but only when you "use" it.
Third:
When a battery ages, it's characteristics change, it will be full... and then all at once, empty. It's not linear. So calculating the capacity is always a bit "guessing". (compare it to stones in your water tank... they don't give you water, the tank doesn't change, but all of a sudden, you're out of water).
conclusion:
capacity of a battery is a very tricky thing to do, it's a combination of voltage, current, age... so the best way to determine capacity is by using the history of the battery as the "guide" to the future. Resetting the battery statistics will remove that history and your phone will have to "learn" it's behavior again. If you don't reset your stats, your values will become more reliable over time (depending of course on the time the stats are kept )
For those who speak dutch, i put a complete battery description/howto/misunderstandings post on www.modelbouwforum.nl (search for posts of "harrydg")
If there are more questions or so, just ask, i'll try to help out as much as possible...
wow harrydg that's great explanation, wish you were my physics teacher back in high school
someone add this post to the main FAQ!
I just wanna write it in a simpler way:
You've access to the battery stats from the kernel. And of course its current consumption which is measured not voltage. Voltage doesn't tell all that much. During high draws your voltage (at the battery level) can fluctuate quite a bit.
There's a regulator (or probably a bunch of them) get a stable voltage no matter what the input voltage is (well, still it has to be in the 3.3/5v range probably else the regulator burns)
Anyway, that's also why the battery stats have to be calibrated, while you can measure how much current is used (in maH aka milli amp per hour, or in mA aka "instant" milli amps), you don't know the battery capacity.
Not only the battery capacity changes from battery to battery but it also changes during the life time of the battery.
The *only* way to calibrate the battery, is to delete the stats, have a fully charged phone and let it drain out the battery until it turns off. That way the kernel will measure for example 1457mah used until it ran out of juice, and that's your battery capacity then. Having the full capacity allows the kernel to give you a rather precise estimate of your current battery status (eg "80%" that you see on the top of the screen) (of course the actual calculation is a bit more complicate but that's the basics)
If calibration stats storage is changed for any reason (probably kernel upgrade or just a whacky samsung implementation that gets corrupted for some reason) you need to delete it and make a new one to recalibrate.
If you want to make it simpler, make it at least correct...
"Anyway, that's also why the battery stats have to be calibrated, while you can measure how much current is used (in maH aka milli amp per hour, or in mA aka "instant" milli amps), you don't know the battery capacity."
First of al, it's mAh, which means milli ampere hour, NOT per hour, that would be mA/h, which it is not.
mA is milli ampere, which is a current
there is a significant difference between the 2.
the first is "capacity"
the second is "current"
it's like a bottle. The capacity is 2l and you pour at 1l per minut...
so... make it simple please...
My guess is, that android is measuring the known min and max by the battery reported values, stores them and calculates the percentages.
So it is device and battery independent.
harrydg said:
If you want to make it simpler, make it at least correct...
"Anyway, that's also why the battery stats have to be calibrated, while you can measure how much current is used (in maH aka milli amp per hour, or in mA aka "instant" milli amps), you don't know the battery capacity."
First of al, it's mAh, which means milli ampere hour, NOT per hour, that would be mA/h, which it is not.
mA is milli ampere, which is a current
there is a significant difference between the 2.
the first is "capacity"
the second is "current"
it's like a bottle. The capacity is 2l and you pour at 1l per minut...
so... make it simple please...
Click to expand...
Click to collapse
Sorry a typo and no caps deserve heavy flaming
bilboa1 said:
Sorry a typo and no caps deserve heavy flaming
Click to expand...
Click to collapse
hehe, sorry for the rant, but if you want to put it simple, make sure the terminology and abbreviations are correct. If not, people will take over the mistakes and conversations will go totally wrong because of misunderstandings...
Thanks very much for the feedback guys. It makes more sense now.
It's using batterystats to get familiar with discharge rates in order to give an accurate estimation of remaining charge and a prediction of when it will run dry.
Can it misreprasent these values and forcibly power down the phone when there is still charge remaining?
And likewise can it stop the charging process prematurely, estimating the battery to be at 100% charge when it is lower?
Is this the reason to recalibrate?
Heres one thing what I noticed about the battery stats, some say deleting it fixes the guage and does not really recalibrate the battery, I really doubt there is a way for end users to do that, even if you never delete the battery stats bin and your drain is pretty fast, it significantly slows down when your battery hits around 25~35, the lower the power on the battery the more accurate it can be represented regardless of the calibration. This is applicaple for the SGS only.
Now it comes to the question..
If the phone create battery stats every time the phone reboot, then when is the best time to delete and the best way to calibrate?
This is what I normally do..
..delete stats at 5%, let it run dry til it turn itself off, dont turn on but connect the charger til it fully charged. Turn phone on and ill have fully charged battery along with fresh stats.
Is this correct?
vosszaa said:
Now it comes to the question..
If the phone create battery stats every time the phone reboot, then when is the best time to delete and the best way to calibrate?
This is what I normally do..
..delete stats at 5%, let it run dry til it turn itself off, dont turn on but connect the charger til it fully charged. Turn phone on and ill have fully charged battery along with fresh stats.
Is this correct?
Click to expand...
Click to collapse
On the SGS theres no real point in deleting it, unless you dont really wanna see the battery go down to 35% and stay there for a while, how ever busted your battery indicator is it gets very accurate as the lower it goes.
I never found batterystats made any difference. What did make a difference is the rom or kernel, what widgets, lagfix e.t.c
If you get more than 1% battery drain per 5hr standby then something is wrong
Sent from my GT-I9000 using XDA App
android53 said:
I never found batterystats made any difference. What did make a difference is the rom or kernel, what widgets, lagfix e.t.c
If you get more than 1% battery drain per 5hr standby then something is wrong
Sent from my GT-I9000 using XDA App
Click to expand...
Click to collapse
I find that conclusion quite flawed.
First of all, what's your definition of standby?
3g on? Wireless on? Autosync on? There are also noticeable differences between different firmwares and between 2.1 and 2.2.
In addition, most people are reporting somewhere around 1% per 1 hour standby or 1% per 2 hour standby, which it what I have been experiencing as well. Sometimes, apparently for no reason, it can drain faster than that, maybe 1% per 0,5 hour or more. I think this might be some widgets fault.
1%/5h standby 3g no sync
i get 1%/2h with data and sync
Depends on your reception, im just basically saying if your losing say 8% battery overnight or more then something is wrong unless your polling several push email accounts
Hello Guys, i bought a new mugen akku and dunno what´s the best way to calibrate it.
There are a few things that are confusing me:
1.Mugen Instructions: "Never drain battery to 0%"
(but that´s required for calibration, isn´t it?)
2.the battery got its full power after a few charges/discharges
(so would it be better to wait to calibrate the akku when it got its full power?)
So finally, should i wait with calibration or do it at the beginning? I think one time is necessary to let it go down to 0%.
So what are your advice?
thx in advance, l-viz
The way I calibrate mine is to discharge it completely so it turns off by itself (normally happens around 1 or 2%) then plug it into the charger and let it charge completely to 100%. Note that the LED will turn green at 90% .. so its not done yet!
Just my 2 coppers...
Sent from my T-Mobile G2 using xda premium
You are just calibrating the battery meter on the phone, not the battery. People constantly abuse the terminology.
You don't need to drain the battery to zero, because the battery meter is not even remotely that accurate in the best of circumstances. Draining to 10 or even 20% is no different than draining to zero.
What CAN happen if you drain to zero, is you you may trip the safety circuit on the battery, and render the battery unable to take a charge, thereby rendering it useless. Its not very likely, and safeguards on the phone are designed to prevent this, but plenty of people on here have had it happen. Full power cycles (draining to zero) also shortens the long term life of the battery. Especially considering there is NO value added to draining the battery to zero, there is no point it doing so intentionally, and taking an unnecessary risk.
Just charge your battery to 100%, let it sit on the charger for a while after full, to make sure its really topped off. Then use the phone until 10-20%. Repeat this a couple times. You can also go into recovery and clear battery stats before you charge/discharge. But I haven't noticed this to make much of a difference.
redpoint73 said:
What CAN happen if you drain to zero, is you you may trip the safety circuit on the battery, and render the battery unable to take a charge, thereby rendering it useless. Its not very likely, and safeguards on the phone are designed to prevent this, but plenty of people on here have had it happen. Full power cycles (draining to zero) also shortens the long term life of the battery. Especially considering there is NO value added to draining the battery to zero, there is no point it doing so intentionally, and taking an unnecessary risk.
Click to expand...
Click to collapse
Wow. I didn't know that. Thanks!
Sent from my T-Mobile G2 using xda premium
Draining the battery to a literal 0% is almost impossible. Lithium ion batteries do not allow devices to utilize all the juice in a the battery. Once a device shuts off and tell you the battery is "dead", there's actually a bit more juice that is only used by the battery to prevent the battery's level from becoming too low.
Think of it like space partitions in hard drives. While you can use 100% of a single partition in a hard drive. There will still be space left over in the other partition.
Now what mugen means is to not allow the battery to reach the 0% of the ENTIRE battery. In order to make that happen you would have to discharge the battery until your device doesn't turn on and then NOT charge the battery for a very long period of time. I'm talking weeks and months of no charge whatsoever. Other than that, feel free to allow your phone to die and charge it back up. This in conjuction with deleting your battery stats file will speed up the calibration process.
Hope I helped out.
Sent from my HTC Vision using Tapatalk
UnSungHERO420 said:
Draining the battery to a literal 0% is almost impossible. Lithium ion batteries do not allow devices to utilize all the juice in a the battery. Once a device shuts off and tell you the battery is "dead", there's actually a bit more juice that is only used by the battery to prevent the battery's level from becoming too low.
Click to expand...
Click to collapse
What is supposed to happen with the failsafes on the device and what ACTUALLY happens unfortunately are not one and the same. There have been plenty of people here that have let their batteries drain to zero, and then the battery will no longer take a charge.
True, the battery is not actually zero voltage. But its low enough that the safety circuit on the battery will prevent it from accepting a charge. The phone is SUPPOSED to prevent the voltage from dipping that low, but it doesn't always work. So the only way to bring the battery back to life, is with a special battery meter with a "boost" function. Since the vast majority of us do not have access to such a thing, the battery is effectively dead, as buying one is likely cheaper and easier than getting access to such a battery meter.
As I've already mentioned, this is unlikely to happen. But its happened to at least a few people with our phone, and I've seen it happen to other XDA users with other devices. No point in playing probabilities, if it happens to you, it sucks and it doesn't matter how "almost impossible" its supposed to be. As I already discussed, the battery meters on phones are not even close to accurate enough to read single, or even 5% battery increments. So draining to zero is not any more beneficial than draining to 10%. No benefit in draining to zero, so why risk it?
I have learned the hard way that discharging lithium ion batteries below 20% is the fastest way to kill them early! (greatly shorten their life)
thanks 4 replies, a lot of useful knowledge
First off this isn't a guide about how to make your battery last longer between charges, at least it isn't yet. If a demand arises I will happily facilitate. *EDIT* For simplicity's sake I am including a link to V7's battery guide which addresses increasing the time between charges. ✭[GUIDE][26-07-2016]Extreme Battery Life Thread(Greenify+Amplify+Power Nap)✭This guide is about reducing wear that happens from many thing we all either knowingly do; out of a possible misunderstanding, or ignorance. All of this information is available doing a simple Google search, I am posting it here though for those who otherwise would not think to Google it. Furthermore I claim credit for absolutely none of this, but I do hope you find it helpful.
HOW TO PROLONG YOUR Li-Ion BATTERY'S LIFE
1) Keep your battery at room temperature: Heat is the worst enemy of your cell phones battery. So keeping your battery at room temperature (65-75*F) is the first step towards prolonging your battery's life. According to Battery University
each 8°C (15°F) rise in temperature cuts the life of a sealed lead acid battery in half.
Click to expand...
Click to collapse
They also go on further adding
Once the battery is damaged by heat, the capacity cannot be restored.
Click to expand...
Click to collapse
There are many things you can do to keep your battery cooler, such as taking it off the charger when the phone is done charging, and avoiding prolonged continuous usage. Also avoid leaving your phone in your car, it gets upwards of 140* in a car during the summer. The worst thing that can happen to a Li-Ion battery is a full charge and high heat, so avoid charging your phone until your car has cooled off if you are charging your battery in the car. Heat is by far the greatest factor when it comes to reducing the lifespan of a Li-Ion battery.
2) Use partial-discharge cycles: According to lancair.net
Using only 20% or 30% of the battery capacity before recharging will extend cycle life considerably
Click to expand...
Click to collapse
Other sites I read while researching this stated that users should use up to 80% of their energy before recharging, they were all consistent with regards to a few things including: avoiding full discharges will prolong battery life, and it takes several partial charges to use one full charge cycle. Additionally Li-Ion batteries do not have "charge memory", but your digital device most likely does. Discharging the battery until cut off after every 30 charge cycles re calibrates the devices gauge.
3) Avoid keeping your battery at 100%: Every source I referenced for this guide said the same thing about keeping your battery at a full capacity, but oranageinks.com explains it most simply by stating
Permanent capacity loss is greatest at elevated temperatures with the battery voltage maintained at maximum (fully charged).
Click to expand...
Click to collapse
4) If you are going to store your battery for an extended period store it at about 50% charged: This goes hand-in-hand with number 3. Also keeping the battery cool during extended storage will slow deterioration. Keeping the battery in a sealed bag or tupperware in your refrigerator is okay, but storing your battery in the freezer is not. When a battery is fully charged oxidation is occurring at its highest rate, and oxidation is essential corrosion. Oxidation occurs whether the battery is in use or not, for this reason it is better to get a high capacity battery rather than a spare. So with this said it almost should go without saying that if you can, buy batteries with a recent manufacture date.
5) Avoid completely discharging your battery: Lancair.com states:
Very deep discharges will quickly, permanently damage a Li-ion battery. Internal metal plating can occur causing a short circuit, making the battery unusable and unsafe. Most Li-ion batteries have protection circuitry within their battery packs that open the battery connection if the battery voltage is less than 2.5 V or exceeds 4.3 V, or if the battery current exceeds a predefined threshold level when charging or is charging
Click to expand...
Click to collapse
If you found this helpful please don't forget to hit the "Thanks" button
now that explain why my battery drain so fast,my phone temperature is a bit high these days,thank you :good
I decrease my battry drain with installing som suitable kernal
this way realy effective in my device battry mangement
You're absolutely right, and you hit the nail on the head,
Saeedblack said:
realy[sic] effective in my device battry[sic] mangement
Click to expand...
Click to collapse
But the physical battery itself needs care too. Device battery management is more related to how much power the CPU sees that the device has. Understanding how a Li-Ion battery works is kinda important at this point. So basically the positive electrode is made of Lithium cobalt oxide (cathode), or LiCoO2. The negative electrode is made of carbon (anode). When the battery is charging, ions of lithium move through the electrolyte from the positive electrode to the negative electrode and attach to the carbon. During discharge, the lithium ions move back to the LiCoO2 from the carbon. Over time the Lithium ions bond to the carbon thereby restricting the flow, creating resistance which decreases the battery's ability to deliver current. So properly caring for your battery is really the only thing that will slow the inevitable. Its kinda the same thing for a car...all cars eventually die, but if you take care of them they will last much longer than if you neglect them.
Thanks for this. It's not the usually same guide for battery improvementent.
My battery life got a little better.
Thanks mate, that's some good information.
Hi.
Just wondering:
in "5) Avoid completely discharging your battery"
Most battery calibration softwares say you SHOULD fully discharge your battery then fully charge it for a good calibration.
So, someone like me, who likes to try new roms, new nightlys all the time, are "slowly" burning the battery to ashes by calibrating it after every flash.
It looks like running the processor faster than specified (overclocking) can result in higher temperatures inside the device and faster battery wear as a result.
azraelus said:
Hi.
Just wondering:
in "5) Avoid completely discharging your battery"
Most battery calibration softwares say you SHOULD fully discharge your battery then fully charge it for a good calibration.
So, someone like me, who likes to try new roms, new nightlys all the time, are "slowly" burning the battery to ashes by calibrating it after every flash.
Click to expand...
Click to collapse
YES you are slowly burning the battery out, by draining it after every flash. The battery is going to die inevitably anyways though, most of the sources I found suggest doing a "full drain" every 30 charge cycles. Perhaps this is when you should go ahead and do your battery calibration. Also a full drain is not exactly self-explanatory in this case. Your device may say that a battery has 1% of its energy left and to an extent it does, but the battery is designed to cut off before it gets too hot or too low. If you have a tendency to cut your phone back on after it dies then you will deplete the battery completely, possibly resulting in permanent damage.
adrian816 said:
It looks like running the processor faster than specified (overclocking) can result in higher temperatures inside the device and faster battery wear as a result.
Click to expand...
Click to collapse
Yes O/C can raise temperatures of the device. Certain kernels run a little hotter than others. My device is currently O/C'd and isn't any hotter than normal when I am not using the device due to CPU governors and what not, and its only marginally hotter than it is when at the stock clock speed. Prolonged heavy use takes a toll on the battery, due to the heat its creating. Also don't let the little bit of heat increase stop you from O/C'ing your device. Many manufacturers use the same cpu with different clock speeds, EX Snapdragon S3 chip is used in the EVO 3D @ 1.2GHz, and the HTC Rezound @ 1.5GHZ from the factory. This is done to reduce power consumption on power hungry phones or to extend the life of a cpu that has proven itself reliable(such as in the example of the Snapdragon S3)...it also helps to market devices without spending more on development.
Good adwise! :good:
This is all very good advice. A lot of it I knew, but I learned a couple new things as well. Glad to see someone making it more easily available to our community!
Sent from my SGH-I777 using xda app-developers app
Found this same information when researching my netbook battery.Turns out there is a good reason it will sleep/hybernate/power off at 3 percent, can damage a cell. On the upside this one will charge faster.
Thanks for the information.
Sent from my GT-S5360 using Tapatalk 2
Oh god, by "avoiding keep it at 100%" you mean "don't use it constantly while charging", right?
I have a seriously problem.
Wish I could do something about #1. My phone can get pretty hot when I'm using it and I like to do a lot of things like playing games or dling torrents which gets it toasty.
Will definitely unplug before 100% from now on though. Thanks
Jane Shizuka said:
Oh god, by "avoiding keep it at 100%" you mean "don't use it constantly while charging", right?
I have a seriously problem.
Click to expand...
Click to collapse
Yea that's pretty much the gist of it...heavy use while charging creates even more heat than just heavy use or just charging. Since doing the research for this thread I've been doing things a little differently myself. Instead of leaving it on the charger most of the day I charge it at night and use it til about 50% then charge it up to 80%...it may be in my head but I highly doubt it. Doing as I described I have had 1 full charge (from 40% to 100%) and a top off charge (50% to 80%) and my device has been on since yesterday morning (so 36 hours+ with only a 30% top off charge). This is with moderate use, and my phone is currently at 70%...MUCH better than before though.
This guide is still meant more for longer term physical battery care, but it appears to have helped extend time between charges.
zlc1 said:
Wish I could do something about #1. My phone can get pretty hot when I'm using it and I like to do a lot of things like playing games or dling torrents which gets it toasty.
Will definitely unplug before 100% from now on though. Thanks
Click to expand...
Click to collapse
Try a different kernel, or underclocking your phone, that should help with the heat.
Thanks, I'll keep this in mind!
Thanks for the advice, but i thought discharge it completely wont do any harm to the battery since the protection circuit will stop at around 3..0-3.4 mV?
ryanshady said:
Thanks for the advice, but i thought discharge it completely wont do any harm to the battery since the protection circuit will stop at around 3..0-3.4 mV?
Click to expand...
Click to collapse
That is about the point the device will cut off, but if you turn it back on like I used to until the device won't turn back on that's when the battery is completely discharged. Battery University goes on to say
Each cycle wears the battery down by a small amount. A partial discharge before charge is better than a full discharge. Apply a deliberate full discharge only to calibrate a smart battery and to prevent “memory” on a nickel-based pack.
Click to expand...
Click to collapse
Link to article HERE
*EDIT*
i wish there's a way to stop charging once it reaches 85-95% like my laptop...
I read that a battery will last longer if you don't let it get below 40%, and full discharges are bad for the longevity. Is this true? Here is a good read on the subject. http://batteryuniversity.com/index.php/learn/article/how_to_prolong_lithium_based_batteries
Jspeer said:
I read that a battery will last longer if you don't let it get below 40%, and full discharges are bad for the longevity. Is this true? Here is a good read on the subject. http://batteryuniversity.com/index.php/learn/article/how_to_prolong_lithium_based_batteries
Click to expand...
Click to collapse
that is true. the affect is probably minimal though(like we probably lose .7% of our battery per month if dont let it get low before charging it, instead of the typical 1% per month)
i get through half of my day with about 50% battery less, sometimes more. so i've made it a habit of charging it once i see it's around this 50% mark.
Jspeer said:
I read that a battery will last longer if you don't let it get below 40%, and full discharges are bad for the longevity. Is this true? Here is a good read on the subject. http://batteryuniversity.com/index.php/learn/article/how_to_prolong_lithium_based_batteries
Click to expand...
Click to collapse
The effect is accelerated/more pronounced below 20%...
Here is the good thing though... These phone's minimum operating voltage is higher than the minimum voltage of a Li ION battery. Using standard battery life measurements, the 0% according to the phone, is about 20% of standard.
Should you do a full discharge every now and then in order to calibrate the battery? I haven't been able to find a definitive answer on this in other related threads. Some say you should, some say it's not necessary since the battery doesn't have memory cells. I have never let my battery get below 50% and everything seems to work fine but it does seem to make sense to do a full discharge from time to time so the battery knows its capacity.
Jspeer said:
Should you do a full discharge every now and then in order to calibrate the battery? I haven't been able to find a definitive answer on this in other related threads. Some say you should, some say it's not necessary since the battery doesn't have memory cells. I have never let my battery get below 50% and everything seems to work fine but it does seem to make sense to do a full discharge from time to time so the battery knows its capacity.
Click to expand...
Click to collapse
Li-ON battery's do not need to be calibrated. that was only with old battery tech such as Ni-Cad or NIMH
I let mine get low all the time I use my phone a lot. Hopefully its not to expensive to replace battery since Google thinks that replacing a battery is to complicated for us tech savvy people
Justice for Kelly Thomas RIP
I don't worry about it. I charge it overnight. If I've over used it in the day and I feel it will die before bed, i'll top it up but not to protect the battery. Just to ensure I can use my phone.
If they wanted you to do anything special with charging / draining, it would be in the instructions
-----------------------
Sent via tapatalk.
I do NOT reply to support queries over PM. Please keep support queries to the Q&A section, so that others may benefit
markdapimp said:
Li-ON battery's do not need to be calibrated. that was only with old battery tech such as Ni-Cad or NIMH
Click to expand...
Click to collapse
The battery itself does not but occasionally the controller needs a kick in the pants. Deep drains on li-ion should be avoided at all costs. The phone hasn't been out long enough to even think about the sort of problem. But after a couple hundred charges you might see a behavior that will be corrected by one full discharge.
Its not uncommon to see cases where you actually replace the cell behind a controller and the controller not picking up the change in capacity. Never in cell phones mostly laptop battery rebuilds etc but it exhibits an idea of what happens. The battery controller takes note of the original, current maximum and current charge capacity. Not sure how I suppose voltage versus read amp hours. But as a battery gets old you might start seeing the maximum capacity reading fluctuate. But if at any time the actual chemical capacity is higher than the controller thinks it is the controller will prevent the battery from reaching its potential.
Used to have older PSP batteries reach 100% real quick, quick fix was to deep discharge through the controller using a small light bulb. The battery would then take a significant charge and last a few more months before kicking the bucket.
Jspeer said:
I read that a battery will last longer if you don't let it get below 40%, and full discharges are bad for the longevity. Is this true? Here is a good read on the subject. http://batteryuniversity.com/index.php/learn/article/how_to_prolong_lithium_based_batteries
Click to expand...
Click to collapse
40% is a good number for storage, its actually better to store it at 40% than 100%. Actual use 20 to 25% is my personal range but I would say just never let it get below 15%. Lithium Ion does not mind being topped off. Deep discharged will ruin it real quick. My laptop battery lasted 3 years never letting it go below 25%, murdered a cell phone battery once a year letting it die.
I let it go to 1% and turn itself off. Then I charge it back up. But if I know I am going out in the next few hours I charge it as much as I can before I leave.
markdapimp said:
Li-ON battery's do not need to be calibrated. that was only with old battery tech such as Ni-Cad or NIMH
Click to expand...
Click to collapse
lots of the fuel gauges for these types of batteries do need to be calibrated. this is not true for the N5 though(i think). I want to say i remember reading that this fuel gauge is different, like a 'smart fuel gauge' or something
kmx said:
I let it go to 1% and turn itself off. Then I charge it back up. But if I know I am going out in the next few hours I charge it as much as I can before I leave.
Click to expand...
Click to collapse
You shouldn't do that almost ever. And by no means as a regular practice.
Molitro said:
You shouldn't do that almost ever. And by no means as a regular practice.
Click to expand...
Click to collapse
Thats what the built in protection is for:
Marine6680 said:
The effect is accelerated/more pronounced below 20%...
Here is the good thing though... These phone's minimum operating voltage is higher than the minimum voltage of a Li ION battery. Using standard battery life measurements, the 0% according to the phone, is about 20% of standard.
Click to expand...
Click to collapse
Enddo said:
lots of the fuel gauges for these types of batteries do need to be calibrated. this is not true for the N5 though(i think). I want to say i remember reading that this fuel gauge is different, like a 'smart fuel gauge' or something
Click to expand...
Click to collapse
Its not any different. as with older battery technologies they would loose capacity until they are calibrated 0% to 100% this is due to the chemistry of the battery
LI-ON battery's have a different chemistry which allows them to store greater capacity without loss like NI-CAD and NIMH did this is why you turn off your phone for a week and turn it on you find it still has about the same battery percentage as you turned it off before.
here's an example of a NI-CAD battery which needs to be calibrated.
You have a drill you haven't used for 3 days it was fully charged before you put it away if you take that same drill 3 days later you'd find it dead. where as LI-ON battery's would still be alive and full capacity. if you charge it from there it wouldn't be calibrated. as calibration requires you to drain the battery 2 times or more till it reaches it full capacity and charge it back up to 100% and repeat.
If you were to do that with a LI-ON battery you're basically doing nothing but wasting your charge cycles on the battery and you could kill it as LI-ON battery's DO NOT LIKE TO BE EMPTY
Because of all that NI-CAD and NIMH mess mostly all power tools you'd find in a shop such as home depot are now equipped with LI-ON battery's as they don't require calibration and can be left for months and it would still have its initial capacity prior to charging because Ni-cad battery's suffer from a memory effect and LI-ON does not, NI-CAD Requires full discharge before recharge LI-ON does not you get the point here right? LI-ON is better!
Now for those apps that claim calibrate the battery they do nothing they just Improve the reading of the software in android to get the battery percentage which is reset every time the battery charges to 100% so in short don't calibrate your battery
You can read more here http://www.diffen.com/difference/Li-ion_vs_NiCad
and watch this video: http://www.youtube.com/watch?v=hrcbcm11830
markdapimp said:
Its not any different. as with older battery technologies they would loose capacity until they are calibrated 0% to 100% this is due to the chemistry of the battery
Click to expand...
Click to collapse
The battery controller is still the source of the problem. If the batteries chemical capacity at a given moment is 1800 mah down from its original 2300 and the charge controller thinks the capacity is 500 the controller will only charge the battery to 500. Most controllers do not act like their dumber counter parts which will trickle or cut off when the cells characteristics indicate it is reaching a full charge.
The controller in these batteries while varying greatly in design all have one thing in common. They are designed for safety. The controller will actually stop accepting a charge forever if the voltage of the cell goes below a certain point. It will also never charge it above the current observed maximum capacity no matter what reality is.
You can poll a battery using vendor specific commands to get the designed, current maximum and current charge. The current maximum charge capacity is a changing value it will change over the life of the battery. This was an aging laptop battery that while the controller knew what the "Full Charge Capacity" was currently it decided not to report that to windows resulting in a hilarious 410%.
But we are talking about a problem that really won't rear its head for 1 or 2 years and were talking about doing it once or twice over the life of the battery. People doing it now and all the time WILL kill the battery very quickly for no benefit.
markdapimp said:
Its not any different. as with older battery technologies they would loose capacity until they are calibrated 0% to 100% this is due to the chemistry of the battery
LI-ON battery's have a different chemistry which allows them to store greater capacity without loss like NI-CAD and NIMH did this is why you turn off your phone for a week and turn it on you find it still has about the same battery percentage as you turned it off before.
here's an example of a NI-CAD battery which needs to be calibrated.
You have a drill you haven't used for 3 days it was fully charged before you put it away if you take that same drill 3 days later you'd find it dead. where as LI-ON battery's would still be alive and full capacity. if you charge it from there it wouldn't be calibrated. as calibration requires you to drain the battery 2 times or more till it reaches it full capacity and charge it back up to 100% and repeat.
If you were to do that with a LI-ON battery you're basically doing nothing but wasting your charge cycles on the battery and you could kill it as LI-ON battery's DO NOT LIKE TO BE EMPTY
Because of all that NI-CAD and NIMH mess mostly all power tools you'd find in a shop such as home depot are now equipped with LI-ON battery's as they don't require calibration and can be left for months and it would still have its initial capacity prior to charging because Ni-cad battery's suffer from a memory effect and LI-ON does not, NI-CAD Requires full discharge before recharge LI-ON does not you get the point here right? LI-ON is better!
Now for those apps that claim calibrate the battery they do nothing they just Improve the reading of the software in android to get the battery percentage which is reset every time the battery charges to 100% so in short don't calibrate your battery
You can read more here http://www.diffen.com/difference/Li-ion_vs_NiCad
and watch this video: http://www.youtube.com/watch?v=hrcbcm11830
Click to expand...
Click to collapse
look man
http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries
Partial discharge on Li-ion is fine; there is no memory and the battery does not need periodic full discharge cycles to prolong life, other than to calibrate the fuel gauge on a smart battery once in a while.
Click to expand...
Click to collapse
now believe what you want
Once in a while isn't explicit. The video posted earlier says once a year or so... both of those are "a while" to me
It all depends on the controller and the software but mostly its no longer necessary.
-----------------------
Sent via tapatalk.
I do NOT reply to support queries over PM. Please keep support queries to the Q&A section, so that others may benefit
Molitro said:
You shouldn't do that almost ever. And by no means as a regular practice.
Click to expand...
Click to collapse
Thanks for the recommendation.:angel:
rootSU said:
Thats what the built in protection is for:
Click to expand...
Click to collapse
Fair enough.
But still doens't seem like a good practice given how the recommendations with this kind of tecnology are usually don't go too low and try to charge at different values, not always plug the charger at the same level.
Li Ion batteries charge to a maximum voltage before the charge stops in a phone or other device that charges while also operating.
To fully charge a Li Ion battery you need to monitor current draw of the battery as it is charging, it drops as the cell reaches saturation. This is difficult to do in an operating circuit... Though the tech may be getting better, as load sharing was not common for charging cell phones a few years ago, but it may now be, I have actually been looking for info on powered device charging, but find little beyond load sharing type.
So the battery in a phone could hold more juice if it was charged out of the device, and more still if the phones could run at the 3v minimum of Li Ion. (min voltage of arm devices is around 3.5v) Load sharing chargers can charge fully though.
Also charge rate affects battery life... slower charging is better for long lifespan. If you overnight charge, use the lowest rated charger you have, or standard USB charging. The current phones come with higher amp chargers now... It really doesn't speed up the overall charge cycle to 100% very much, but it does make charging to 80% quicker. So you can do a quick charge of a low battery to a usable level in a hurry.
Power tools use LiFe chemistry batteries which are more tolerant of abuse and misuse... at the cost of less voltage and capacity and more weight.
I work from home so it's easy for me to top off the phone as needed. I'll usually throw it on the charger for a while around 3-ish PM to make sure that I have a full charge going into the evening since I do a lot of reading on it after the kids are in bed. I'm definitely what you would call an opportunistic charger - there's no need to drain the battery all the way unless you absolutely can't get to a charger. I don't understand why people choose to run their batteries down all the way when they don't have to.
My battery drains quickly when reached 6%, and drops after a minute to 5%, few seconds to 4%, 3%, 2% 1% and the samsung logo appears just as soon as possible.
Also when full charged to 100%, it will drop to 97% just in few minutes!
hello, this is normal(i think) same situation with S21 and S21ultra i have, quick drop few% from 100% and under 7% also unpredictable drop to 0.
vlubosh said:
hello, this is normal(i think) same situation with S21 and S21ultra i have, quick drop few% from 100% and under 7% also unpredictable drop to 0.
Click to expand...
Click to collapse
from iphone 12 pro max to this phone, and really feel its weird
czw2002cn said:
from iphone 12 pro max to this phone, and really feel its weird
Click to expand...
Click to collapse
battery management on both devices are different. for example I had an iphone 13 pro max and battery would stay at 100% for so much longer than the s22 ultra, but then the drain would happen a tad faster. Also the running apps play a role in draining after certain levels. powering up a device this type does take a lot of power. Did you try power saving options after reaching a certain power level?
Also not a good practice to allow the battery to get that low. Battery longevity will be compromised.
hand-filer said:
Also not a good practice to allow the battery to get that low. Battery longevity will will be compromised.
Click to expand...
Click to collapse
This is also important. and if for some reason you can't charge and you are getting to 15%, enable battery saving and if you get below 10 use Ultra battery saving.
some experts suggest it is a good measure to let the battery drain to 0 once or twice to get calibrated. It shows 5% but it might actually be a lot lower than that, hence the sharp drop to 0. It should in theory be better after "calibration". And of course, battery longevity will be compromised by anything you do to it, whether it's charging to 100% or draining to 0%. For calibration you do this once or twice.
derausgewanderte said:
some experts suggest it is a good measure to let the battery down to 0 once or twice to get calibrated. It shows 5% but it might actually be a lot lower than that, hence the sharp drop to 0. It should in theory be better after "calibration". And of course, battery longevity will be compromised by anything you do to it, whether it's charging to 100% or draining to 0%. For calibration you do this once or twice.
Click to expand...
Click to collapse
They're not experts. Lithium-ion batteries do not require recalibrating. Discharging to 0 is extremely hard on them.
"One particularly persistent battery myth is that you need to occasionally fully discharge and recharge to erase “battery memory.” This couldn’t be more wrong for lithium-ion batteries. It’s a leftover myth from lead-acid cells, and it’s pretty undesirable to charge your modern smartphone in this way"
Charging habits to maximize battery life
hand-filer said:
They're not experts. Lithium-ion batteries do not require recalibrating. Discharging to 0 is extremely hard on them.
"One particularly persistent battery myth is that you need to occasionally fully discharge and recharge to erase “battery memory.” This couldn’t be more wrong for lithium-ion batteries. It’s a leftover myth from lead-acid cells, and it’s pretty undesirable to charge your modern smartphone in this way"
Charging habits to maximize battery life
Click to expand...
Click to collapse
thanks for setting me straight