Most of you would have experienced or heard of the constant 'Google Play Services has stopped' messages problem, and here I present a fix! Just follow the guide below to compile your own fixed libjavacore.so which you just copy to /system/lib(overwriting the existing one) and you should see the problem is solved The fix from Google: libjavacore.so fix. EDIT: Unfortunately the fix causes build errors on newer Android source code, so a modified version of the commit is used now: thanks @zephiK
NOTE: If you are using a PURE AOSP ROM, and your ROM build date is later than Mon Mar 23 2015, then you likely DO NOT need this fix
NOTE: This guide assumes that you already have a build environment setup for your device in question(and that you already finished a repo sync), and that you have basic knowledge about how to use a Linux Terminal. There are many guides on the internet on this topic so I'll leave it out.
Steps: First open a new Terminal session on your Linux/Cygwin machine
RECOMMENDED BUT OPTIONAL: Do a 'repo sync'(you can just do it on the libcore repo) and a 'make clean'
Code:
repo sync -j4
Code:
make clean
1. Go to the 'libcore' directory in the root of your android source tree
Code:
cd libcore
2. Add a new remote with whatever name you want(in this guide I will call the new remote fix)
Code:
git remote add [COLOR="red"]fix[/COLOR] https://android.googlesource.com/platform/libcore
Code:
git remote add [COLOR="red"]fix[/COLOR] https://github.com/zephiK/android_libcore.git
3. Now do a git fetch on 'fix'(or whatever name you called the new remote)
Code:
git fetch [COLOR="red"]fix[/COLOR]
4. Now time for a cherry-pick!
Code:
git cherry-pick 08d97aee56db51f718544562f5b74671be34dfaf
Code:
git cherry-pick 4fd69cb3de4e52b5b6d78ac61237f914853de151
OPTIONAL: Remove the new remote(Replace fix with whatever name you called it)
Code:
git remote remove [COLOR="red"]fix[/COLOR]
5. Now the fix has been imported into libcore, which will be compiled into a fixed libjavacore.so!
Code:
cd ..
source build/envsetup.sh
make -j4 libjavacore
6. Just wait for a while(probably about 30 mins on an average computer), and then goto your out directory. Proceed to 'target/product/<device name>/system/lib', and you should find a newly compiled libjavacore.so
Code:
cd $OUT/target/product/<device name/system/lib>
7. Now just upload it to your device, and copy it to /system/lib with 0644 permissions(in other words, -rw-r-r). Optional: backup the original /system/lib/libjavacore.so in case something goes wrong or this fix doesn't work
Code:
chmod 0644 /system/lib/libjavacore.so
You are now done! Feel free to share the lib to help others solve their problems, and enjoy lollipop
Credits
temasek(for sharing about this fix)
arter97_dev on Twitter(for a fixed libjavacore.so for his device)
Google(for original fix)
zephiK(for his fix)
XDA(for this awesome forum )
Fixed libjavacore.so downloads
If you had successfully compiled libjavacore.so and tested it on your device, and you would like to share it here, just mention me or pm me with the link and your device name and I'll put it here. Thanks!
Galaxy S4(compiled for CM12, but should work on all 5.0 ROMs)
Reserved post
Related
NOTE: I Am On Linux Mint 9 32 bit
Okay So I Have Lately been trying TO Get The Latest Android Source Code From Google
Now I Follow The Instructions Down To The Wire (The Ones For Ubuntu, But They Should In Theory Work For Mint 9), And Everything Works Up Until I get To This Part:
Initializing a Repo client
Run "repo init" to bring down the latest version of Repo with all its most recent bug fixes. You must specify a URL for the manifest:
$ repo init -u git://android.git.kernel.org/platform/manifest.git
If you would like to check out a branch other than "master", specify it with -b, like:
$ repo init -u git://android.git.kernel.org/platform/manifest.git -b cupcake
When prompted, configure Repo with your real name and email address. If you plan to submit code, use an email address that is associated with a Google account .
A successful initialization will end with a message such as
repo initialized in /mydroid
Your client directory should now contain a.repodirectory where files such as the manifest will be kept.
Click to expand...
Click to collapse
And When I Try To Run That Line Through The Terminal I Get This Error:
Code:
Traceback (most recent call last):
File "/bin/repo", line 91, in ?
import readline
ImportError: No module named readline
Now I Know What The Problem is, It Is Looking For The readline.so in the the lib folder, Yet Even Though It Is There It Still Wont Work.
Now I Have Tried All 2.x.x Versions Of Python (2.4.6, 2.5.5, & 2.6.4) and None Of Them Work.
Also With Each Version I Run:
Code:
$ ./configure --enable-readline
And Still the Same Error.
i Have Been working On this For About 3 Hours Now And Still Now Luck.
I Tried A Google Search But Every Topic Get Close To Helping Someone Get It Then Stops.
Please Help Me Out Here ?
Okay So I Found The Solution.
repo runs STRICTLY off of 2.4.x and for some reason when I installed Python 2.4.6 readline.so was never put into:
Code:
/usr/local/lib/python2.4/lib-dynload/
So I copied the readline.so from my Python 2.6.4 folder (File Download Below)
and put it into:
Code:
/usr/local/lib/python2.4/lib-dynload/
Then I ran repo again and it worked fine.
Although it withh give you an API mismatch warning, but so far it has worked fine
i had that problem so i edited repo itself and deleted line 91
if u dont have internet connection to make a ROM this guide is for you and you dont need to have download for GB's of file
first im taking carbon ROM for example
1.You will need to set up some directories in your build environment:
To create them run:
mkdir -p ~/bin
mkdir -p ~/carbon
2.Install the Repository
Enter the following to download the "repo" binary and make it executable:
curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo && chmod a+x ~/bin/repo
You may need to reboot for these changes to take effect. Now enter the following to initialize the repository:
cd ~/carbon
Repositories:
Before you continue --> run this in the terminal:
repo init -u https://github.com/CarbonDev/android.git -b kk
3.now open carbon folderand press ctrl + H if u see .repo folder u can continue to next
repo sync --> firsy sync for 5mins to load the folder and then stop syncing by closing terminal
4.after that see the manifest.xml with notepad or any suitable one and you can see link for the packages EXAMPLE: android_art search in the cyanogenmod or in which u want to build
5.im sharing link database of packages for building carbon rest u have the job to search and typer in github
package which to be downloaded for carbon ROM is here http://d-h.st/zru
6.after making source proper --> Building the System --->>>Initialize the environment with the envsetup.sh script. Note that replacing "source" with a single dot saves a few characters, and the short form is more commonly used in documentation.
. build/envsetup.sh
lunch
Enter the number of the build you want to start and press enter:
make carbon -j7 = Run Squisher/Run Opticharger
make otapackage -j7 = No Squisher/No Opticharger
optional --> Submitting Patches
Patches are always welcome! Please submit your patches via CarbonDev Gerrit! You can do this by using these commands:
Setting up for repo upload: (run these commands once)
git config --global review.review.carbonrom.org.username <Your username registered at CarbonDev gerrit>
git config --global review.review.carbonrom.org.email <Your email registered at CarbonDev gerrit>
(From root android directory)
. build/envsetup.sh
repo start kk .
(Make your changes and commit)
repo upload .
Note: "." meaning current directory For more help on using this tool, use this command: repo help upload
Make your changes and commit with a detailed message, starting with what you are working with (i.e. vision: Update Kernel) Commit your patches in a single commit. Squash multiple commit using this command: git rebase -i HEAD~<# of commits>
To view the status of your and others' patches, visit EAMPLE:Carbondev Code Review
if you want to build :
CYANOGENMOD -->do steps upto initialisng repo ------------https://github.com/CyanogenMod/android
OMNIROM -->do steps upto initialisng repo ------------https://github.com/omnirom/android
CARBON -->do steps upto initialisng repo ------------https://github.com/CarbonDev/android
dont click thanks if i helped you because thanks button is gonna damage
CREDITS:
---------> Ramsudharsan madhavan for teaching me
---------> Guru sanjay my friend helping me to download
---------> and me for thinking this idea in my school time
Goin gud. keep it up.
Awesome man!
Worth for Portal!
Sent from my Xperia Sola using XDA Premium 4 mobile app
Nevermind.
This is a general open source linux development thread!
Android's kernel is a derivative of linux's kernel. Its good to know how to build both of these kernels. You might be already familiar with building kernels for various devices from sources. So I have made a new thread for guiding people on how to compile linux kernel from source (example taken as ubuntu kernel).
Requirements:
Any linux os x64 bit(example here: ubuntu 14.04)
Git (sudo apt-get install git)
Minimum of 4GB RAM and some reasonable linux-swap
To get the currently running kernel image, type the following:
Code:
apt-get source linux-image-$(uname -r)
Now we need to obtain Ubuntu Kernel Sources from its repositories. Make a new directory and inside it, initialise the git and clone the repository.
Code:
git clone git://kernel.ubuntu.com/ubuntu/ubuntu-<release>.git
<release> : Type in the required source. It can be lucid, precise, trusty, utopic etc.
Setting up the build environment. There are lots of tools and packages that are very much essential for building a kernel. These tools can be downloaded as a whole bundle and can be installed easily. Here's the code to set it up:
Code:
sudo apt-get build-dep linux-image-$(uname -r)
NOTE: The above comand can be executed only after you obtain the currently running kernel image. I have already given the code to obtain it above.
Now, change directory to the root of the kernel and type the following:
Code:
chmod -R a+x *
The above code will set the required permissions for building and executing the kernel.
Now, run these two commands:
Code:
fakeroot debian/rules clean
fakeroot debian/rules editconfigs
The first command cleans up the code automatically.
The slightly tricky part is with the second line of the code. When you execute it, you will have to edit a series of menuconfigs. To make changes to the configuration file we need to edit the configuration file. The kernel developers have created a script to edit kernel configurations which has to be called through the debian/rules makefile, unfortunately you will have to go through all the flavors for this script to work properly. The script will ask you if you want to edit the particular configuration. You should not make changes to any of the configurations until you see your wanted flavour configuration
We have now covered about 70% of progress. The rest is building the kernel and testing it.
Building the kernel is quite easy. Change your working directory to the root of the kernel source tree and then type the following commands:
Code:
fakeroot debian/rules clean
fakeroot debian/rules binary-headers binary-generic
If the build is successful, a set of three .deb binary package files will be produced in the directory above the build root directory. For example after building a kernel with version "3.13.-0.35" on an amd64 system, these three .deb packages would be produced:
Code:
cd ..
ls *.deb
linux-headers-3.13.0-35_3.13.0-35.37_all.deb
linux-headers-3.13.0-35-generic_3.13.0-35.37_amd64.deb
linux-image-3.13.0-35-generic_3.13.0-35.37_amd64.deb
Testing the new kernel
Install the three-package set (on your build system, or on a different target system) with dpkg -i and then reboot:
Code:
sudo dpkg -i linux*3.13.0-35.37*.deb
sudo reboot
Guys, I hope I have made an easy tutorial. You are always welcome to ask doubts (even on PM). Thank You.
Specific Hardware/Architecture
Creating a new config
I’ll be using the method of creating a new flavour, this adds a bit more work but this way you can always compile the original kernels.
We’ll use the generic flavour as the base for our own flavour being i7, this extension needs to be in small caps.
Code:
cp debian.master/config/amd64/config.flavour.generic debian.master/config/amd64/config.flavour.i7
fakeroot debian/rules clean
debian/rules updateconfigs
To make changes to the configuration file we need to edit the configuration file. The kernel developers have created a script to edit kernel configurations which has to be called through the debian/rules makefile, unfortunately you will have to go through all the flavours for this script to work properly.
Code:
debian/rules editconfigs
The script will ask you if you want to edit the particular configuration. You should not make changes to any of the configurations until you see the i7 configuration
Code:
Do you want to edit config: amd64/config.flavour.i7? [Y/n]
Make your changes, save the configuration and then keep going until the script ends.
When you’re done, make a backup of the config flavor file.
Code:
cp debian.master/config/amd64/config.flavour.i7 ../.
Now we need to clean up the git tree in order to get ready for compilation.
Code:
git reset --hard
git clean -df
Getting ready for compilation
Because we are going to be creating a new flavour based on a existing flavour (generic in my case) we need to create some extra files. During compilation the process checks the previous release for some settings, as we’re creating a local flavour it doesn’t exist in the source, so we’re creating it.
To see the previous release we use:
Code:
ls debian.master/abi
cp debian.master/abi/3.0.0-12.20/amd64/generic debian.master/abi/3.0.0-12.20/amd64/i7
cp debian.master/abi/3.0.0-12.20/amd64/generic.modules debian.master/abi/3.0.0-12.20/amd64/i7.modules
Copy our flavored configuration file back.
Code:
cp ../config.flavour.i7 debian.master/config/amd64/
We need to edit some files:
File: debian.master/etc/getabis
Search for the line:
Code:
getall amd64 generic server virtual
Change it in:
Code:
getall amd64 generic server virtual i7
File: debian.master/rules.d/amd64.mk
Search for the line:
Code:
flavours = generic server virtual
Change it in:
Code:
flavours = generic server virtual i7
File: debian.master/control.d/vars.i7
This files does not exist and in order to make the compilation process aware of our own flavor we want to compile we need to create it.
Code:
cp debian.master/control.d/vars.generic debian.master/control.d/vars.i7
You can edit the file and make it your own.
Code:
arch="i386 amd64"
supported="i7 Processor"
target="Geared toward i7 desktop systems."
desc="x86/x86_64"
bootloader="grub-pc | grub-efi-amd64 | grub-efi-ia32 | grub | lilo (>= 19.1)"
provides="kvm-api-4, redhat-cluster-modules, ivtv-modules, ndiswrapper-modules-1.9"
We need to commit our changes in the git repository.
Code:
git add .
git commit -a -m "i7 Modifications"
The text after -m is the message you add to your commit.
Compilation
It’s finally time for compiling, to keep our newly created branch in pristine condition we will do the compilation in a separate branch. We keep our branch clean as this will help later on when we want to update our new branch to a newer kernel.
Code:
git checkout -b work
fakeroot debian/rules clean
All the packages will be created in the directory /d1/development/kernel/ubuntu/oneiric
Create independent packages:
Code:
skipabi=true skipmodule=true fakeroot debian/rules binary-indep
The above statement will create the following deb files:
Code:
linux-doc_3.0.0-13.21_all.deb
linux-headers-3.0.0-13_3.0.0-13.21_all.deb
linux-source-3.0.0_3.0.0-13.21_all.deb
linux-tools-common_3.0.0-13.21_all.deb
Create the tools package:
Code:
skipabi=true skipmodule=true fakeroot debian/rules binary-perarch
The above statement will create the following deb file:
Code:
linux-tools-3.0.0-13_3.0.0-13.21_amd64.deb
Create the flavour depended files:
Code:
skipabi=true skipmodule=true fakeroot debian/rules binary-i7
The above statement will create the following deb files:
Code:
linux-headers-3.0.0-13-i7_3.0.0-13.21_amd64.deb
linux-image-3.0.0-13-i7_3.0.0-13.21_amd64.deb
Installation
After the compilation is finished we’ll have the above packages in the parent directory.
To install the files
Code:
cd ..
sudo dpkg -i linux-headers-3.0.0-13-i7_3.0.0-13.21_amd64.deb linux-headers-3.0.0-13_3.0.0-13.21_all.deb linux-image-3.0.0-13-i7_3.0.0-13.21_amd64.deb
Check your bootloader if the newly installed Ubuntu kernel is the default one, for grub check the file /boot/grub/menu.lst or if you run grub2 check /boot/grub/grub.cfg
thx for your info
nice job mate..!! :good:
now i'm gonna try this..!!
Nice ,i can't say anything
faizauthar12 said:
Nice ,i can't say anything
Click to expand...
Click to collapse
Thank you for the great guide!!!
Nice thread. I'll try it at home
Thanks
Enviado de meu Moto G usando Tapatalk
Thx for the guide
tra_dax
Now tested up to downloading AOSP and make toolbox you should be all set
Please give thanks to this thread: https://forum.xda-developers.com/newreply.php?do=newreply&p=43622764
Warning: I hacked my way through this stuff a few weeks ago I am not an expert!
How to compile Android Open Source Code modules
I don't compile C code on Windows machines I have no idea about that.
Notice
This guide is a quick and dirty how to make a module. It will not cover finalizing setting up the source codes for your device. It is only my goal to enable you to compile binaries such as grep, toolbox, dumpstate, dalvikvm, jack and etc.
===>] Setup Ubuntu 64bit [<===Unplug that Windows drive, plug in a fresh hard drive and install Ubuntu latest/greatest. Ignore the recommendation to downgrade gnu make!, for now.
Open a terminal and issue these commands (warning ppa repository for OpenJDK 7 is said to have a security issue?, isn't being updated?.. whatevs it works)
Code:
sudo apt-get update
sudo apt-get upgrade
sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get install openjdk-7-jdk
sudo apt-get install openjdk-8-jdk
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-1.0:i386
sudo apt-get install git ccache automake lzop bison gperf build-essential zip curl zlib1g-dev zlib1g-dev:i386 g++-multilib python-networkx libxml2-utils bzip2 libbz2-dev libbz2-1.0 libghc-bzlib-dev squashfs-tools pngcrush schedtool dpkg-dev liblz4-tool make optipng
(choose Java 1.7 in the following way)
Code:
sudo update-alternatives --config java
(let me know if I missed anything please)
"Tried the Android SDK only it is missing too many things we need as a developer"
===>] Setup Android Studio SDK & NDK [<===Installation Paths:
*** I install to /home/username/Android and /home/username/Android/Sdk and /home/username/Android/Sdk/ndk-bundle ***
NOTE: from here forward username will == droidvoider
Note: Android Studio IDE isn't necessary only the SDK & NDK are needed to compile AOSP.
Install Android Studio Proper: (don't worry about setting up paths we will cover that, just install it)
https://developer.android.com/studio/install.html
or
SDK Only:
Typically we install these things manually by creating the directory then just unzipping the files there.
https://developer.android.com/studio/index.html#linux-bundle (scroll down for sdk only)
Code:
mkdir /home/droidvoider/Android
mkdir /home/droidvoider/Android/Sdk
(then unzip the sdk zip to that directory. I recommend the file explorer copy/paste right click uncompress and done.)
https://dl.google.com/android/repository/tools_r25.2.3-linux.zip
Install NDK through the SDK Manger:
(from terminal 'studio.sh' and then configure, and then sdk manger --- if this is hard to figure out tell me I will elaborate)
or
Manually Install Native Development Kit -- 'c programming support'
Download the Native Development Kit from Google: https://developer.android.com/ndk/downloads/index.html
Code:
mkdir /home/droidvoider/Android/Sdk/ndk-bundle
Then just unzip the ndk files into the directory we created above.
===>] Setup your toolchain [<===** This example is arm64-v8a aarch64 **
1. Navigate to /home/droidvoider/Android/Sdk/ndk-bundle/build/tools and then open a terminal "right click open area"
2. mkdir /home/droidvoider/toolchains
3. ./make_standalone_toolchain.py --arch arm64 --api 23 --stl=libc++ --install-dir /home/mm/toolchains/aarch64-linux-android-4.9
4. cd /home/droidvoider
5. gedit .bashrc and morph this in at the bottom.. (AND edit or replace the existing PATH variable)
DON'T just PASTE IN *my* $PATH export!! I included my entire path statements to show you.
Code:
export PATH=$PATH:/usr/local/android-studio/bin:/home/droidvoider/Android/Sdk/platform-tools:/home/droidvoider/Android/Sdk/ndk-bundle:/home/droidvoider/Android/Sdk/tools
I feel this is human readable, for example change Android_Build_Out to be on your desktop instead if you want.
Code:
export PATH=$PATH:/home/droidvoider/toolchains/aarch64-linux-android-4.9
export NDK=/home/droidvoider/Android/Sdk/ndk-bundle
export SYSROOT=$NDK/platforms/android-23/arch-arm64
export TARGET=aarch64-linux-android
export HOST=$TARGET
export BUILD=x86_64-linux
export ANDROID_NDK_BIN=/home/droidvoider/toolchains/aarch64-linux-android-4.9/bin
export CC=$ANDROID_NDK_BIN/aarch64-linux-android-gcc-4.9
export CPP=$ANDROID_NDK_BIN/aarch64-linux-android-g++
export AR=$ANDROID_NDK_BIN/aarch64-linux-android-ar
export OUT_DIR_COMMON_BASE=/home/droidvoider/Android_Build_Out
Note: You might want to setup an alternate toolchain also but this is all of the puzzle pieces.
===>] Google's version of this How To -- Just for reference [<===https://source.android.com/source/requirements.html
https://source.android.com/source/initializing.html
===>] Install the repo tool [<===https://source.android.com/source/downloading.html
(don't type repo init or repo sync --- I will be taking back over from there on the next page)
Added Repair Notes -- Not part of the install!
Have you accidentally installed or removed something you shouldn't have? (welcome to development, here try this before reinstall)
sudo apt-get clean
sudo apt-get update
sudo apt-get install -f
sudo dpkg -a --configure
sudo apt-get dist-upgrade
sudo apt-get install -f
sudo dpkg -a --configure
Selecting the correct AOSP branch and downloading it.
Tested up to downloading AOSP and make toolbox -- you should be all set
===>] Match your build number to it's AOSP sources [<===preface: You can get this from your device if you're on the same build id as your the available source code from your vendor for your device. Otherwise you need to open the AP file from the firmware that matches those available sources to extract the system.img, to extract build.prop. I explain how to open a system.img file below under retrieving your hardware drivers. build.prop is in the main directory of system.img
(Many times the build number is the same. For me I believe all of MM builds are using this number.)
Assumes sources match current device, worked out true in my case
1. Plug in your device and get it connected. (DEVELOPER OPTIONS|USB DEBUGGING) and select allow on device
2. Retrieve the build number that matches the available sources for your device.
From your ubuntu terminal retrieve the build id using this command:
Code:
adb shell getprop | grep 'ro.build.id'
Yields something similar to this: [ro.build.id]: [MMB29K]
3. Match it up to the Nexus build numbers (This info is for AT&T Note 5 Marshmallow MMB29K, get your specific build number!)
https://source.android.com/source/build-numbers.html#source-code-tags-and-builds
MMB29K android-6.0.1_r1 Marshmallow Nexus 5, Nexus 5X, Nexus 6, Nexus 7 (flo/deb), Nexus 9 (volantis/volantisg)
===>] Bring down a specific AOSP source branch [<===
4. Make a directory for the source code.
Code:
mkdir /home/droidvoider/Desktop/AOSP_Android_6.01_r1
5.
Code:
cd /home/droidvoider/Desktop/AOSP_Android_6.01_r1
6. Bring down the sources, this one is approximately 13 gigabytes
Code:
repo init --depth=1 -u https://android.googlesource.com/platform/manifest -b android-6.0.1_r1
repo sync
===>] I'm not sure the rest of this is needed [<===For compiling toolbox the remainder wasn't needed.. But I have a large list of things to do so I can't test each item. If you can't compile a specific module continue reading.
===>] Merge Vendor sources & AOSP sources [<===
7. Download the available sources for your device. In this example I downloaded PE6 Marshmallow sources for AT&T Note 5:
http://opensource.samsung.com/reception/receptionSub.do?method=sub&sub=F&searchValue=SM-N920A
8. Read the readme file from the sources platform zip to understand how to merge them into the AOSP sources. For the 2 Samsungs I've worked with the idea is to replace any directory that already exists. But if there is just one file such as core.mk only replace the one file. Then edit the .mk files as described in your readme. (and/or take info from cyanogen/lineagos) -- <I can help more, ask>
note: you probably don't need to take the configs from LineageOS and put them into your .mk files. However, if you do need to get more configs then you should get a big fat message when you type make 'modulename'. At first only edit .mk files as described by vendor device source readme file.
===>] Merge in Hardware drivers and etc [<===possibly unnecessary depends what you're doing
9. Obtain a copy of the firmware for your device that matches the version of the source code you are able to download from your vendor.
for me that was Build Number: MMB29K.N920AUCU2BPE6 but your mileage will almost certainly vary!
10. Download https://github.com/anestisb/android-simg2img
11. Unzip it right in your download folder, open the folder and then 'open in terminal'
12. Make it and then move it a directory in your path. Warning: My command puts in in the Ubuntu default /bin folder.
Code:
make
sudo mv append2simg img2simg simg2img simg2simg simg_dump.py /bin
13. Uncompress the AP file from the matching firmware and extract the system.img into it's own directory
then select that folder, right click, open in terminal
Code:
simg2img system.img sys.raw
mkdir sys
sudo mount -t ext4 -o loop sys.raw sys/
14. A drive mounted, look on your task bar it should've wiggled too. Copy the etc and vendor folders into the main folder of the sources we are merging
===>] Listing and building modules [<===Navigate to the folder where you download the sources "/home/droidvoider/Desktop/AOSP_Android_6.01_r1" and open in terminal.
Code:
make modules -- list the available modules
make <module name> -- builds a specific module
example: make dumpstate
description: Will build everything needed for dumpstate and place it in the folder we specified in our export (above step). The final build line will read install and detail the final output folder
Example successful output:
[CODE]
Install: /home/droidvoider/Android_Build_Out/Android_6.01_r1/target/product/generic/system/bin/dumpstate
===>] Android Build System, basic intro [<===Notice: I built this how to to answer the same question from 3 people regarding working with toolbox and the dirtycow exploit. So I decided to give a direct example of using toolbox.c from farm-root
#ifdef
Our makefile is Android.mk and that's where we link things together. If you look at the Android.mk file for farm-root you will notice bridge.c is used 3 different times called different 'module' names. bridge_pull, bridge_push, bridge_pull_boot. Each of these will be binaries of those names.
Inside bridge.c you will see #ifdef FARM_PULL and then you will see #else and further you will see #endif which you may have noticed matches inside the Android.mk file for the bridge modules -DFARM_PULL -DFARM_BOOT <== Notice the double define on bridge_pull_boot
toolbox.c
toolbox.c is going to be the same way. You will need to copy shared.h and shared.c into the directory where toolbox.c resides. Then edit the Android.mk, in our example:
1. Navigate to this directory and open: system/core/toolbox/Android.mk
2. CTRL + F and search for "LOCAL_MODULE := toolbox"
3. Add: LOCAL_CFLAGS += -DFARM_PULL -DFARM_BOOT (in this example add one, both or even new ones you created)
4. Navigate to the main directory of the sources, you should see a Makefile and a build_64bit.sh
5. from terminal: make toolbox
Note: I think from here you can Google it out in a few minutes if that is not the case please let me know.
Working with C cross platformUbuntu is Linux based just like Android and this makes testing blocks of code extremely easy. You of course can't use Android headers and in some rare cases you can't test the code on Ubuntu at all but in most cases you can. When I want to design something for Android I open gedit and save it as a .c file. Then I compile it using gcc -o mycode mycode.c There's plenty of examples on using gcc with linux but just understand you can do it all. Then before too much work test it on Android. (helpful commands at end of post)
My advice really is to build out your small blocks of code on your linux box but then paste them into your Android program folder, edit your Android.mk, add it to your Makefile including your 'push' section so that you can simply type make push to test it.
I am in fact trying to encourage you to learn C and not so much trying to encourage you to hack things. But I know that interest/passion is what teaches, not my words and not someone else's curriculum. So in that spirit I will do my best to give examples to help you with 'whatever' it is you are passionate about. Let me know what's missing.
Don't forget to compile for Android first
Before you can test your code you will have compiled it using the cross compiler for Android. ndk-build, or the correct gcc cross compiler. (Personally I put the .c file into a directory with Android.mk and a Makefile then just type make to build it to Android)
see examples section I will add a couple examples.
Android Developer Bridge -- a developers tool
adb is included with the Android SDK along with some other tools. Some of those tools are fastboot for unlocking bootloaders and another way of flashing. There is monitor which is a cool tool for remotely viewing processes, logcat, memory dumps and etc.
But pointedly what we will use the most is simply adb.
Using adb to test your code on locked down Android systems
Shell has fairly high privileges, you may not be aware but you can execute binaries and bash scripts. We use /data/local/tmp/ for these things. You can create a directory, add or remove files, execute your binaries and even execute shell scripts using sh script.sh
ndk-build places the binary in libs/(arch type) .. For a quick test you can just open a terminal in that directory then:
Code:
adb push mybinary /data/local/tmp/
adb shell
cd data/local/tmp
chmod 777 mybinary
./mybinary
Added:
Examples of basic make files for Android.
happy coding
If you get an errorPlease reissue the command but pipe the output to a file.
make toolbox > /home/droidvoider/Desktop/build_toolbox-output.txt
zip that up with your source code, including your customized header files and attach it to this thread.
puzzles are fun but I like all the pieces
droidvoider said:
Tested up to downloading AOSP and make toolbox -- you should be all set
===>] Match your build number to it's AOSP sources [<===preface: You can get this from your device if you're on the same build id as your the available source code from your vendor for your device. Otherwise you need to open the AP file from the firmware that matches those available sources to extract the system.img, to extract build.prop. I explain how to open a system.img file below under retrieving your hardware drivers. build.prop is in the main directory of system.img
(Many times the build number is the same. For me I believe all of MM builds are using this number.)
Assumes sources match current device, worked out true in my case
1. Plug in your device and get it connected. (DEVELOPER OPTIONS|USB DEBUGGING) and select allow on device
2. Retrieve the build number that matches the available sources for your device.
From your ubuntu terminal retrieve the build id using this command:
Code:
adb shell getprop | grep 'ro.build.id'
Yields something similar to this: [ro.build.id]: [MMB29K]
3. Match it up to the Nexus build numbers (This info is for AT&T Note 5 Marshmallow MMB29K, get your specific build number!)
https://source.android.com/source/build-numbers.html#source-code-tags-and-builds
MMB29K android-6.0.1_r1 Marshmallow Nexus 5, Nexus 5X, Nexus 6, Nexus 7 (flo/deb), Nexus 9 (volantis/volantisg)
===>] Bring down a specific AOSP source branch [<===
4. Make a directory for the source code.
Code:
mkdir /home/droidvoider/Desktop/AOSP_Android_6.01_r1
5.
Code:
cd /home/droidvoider/Desktop/AOSP_Android_6.01_r1
6. Bring down the sources, this one is approximately 13 gigabytes
Code:
repo init --depth=1 -u https://android.googlesource.com/platform/manifest -b android-6.0.1_r1
repo sync
===>] I'm not sure the rest of this is needed [<===For compiling toolbox the remainder wasn't needed.. But I have a large list of things to do so I can't test each item. If you can't compile a specific module continue reading.
===>] Merge Vendor sources & AOSP sources [<===
7. Download the available sources for your device. In this example I downloaded PE6 Marshmallow sources for AT&T Note 5:
http://opensource.samsung.com/reception/receptionSub.do?method=sub&sub=F&searchValue=SM-N920A
8. Read the readme file from the sources platform zip to understand how to merge them into the AOSP sources. For the 2 Samsungs I've worked with the idea is to replace any directory that already exists. But if there is just one file such as core.mk only replace the one file. Then edit the .mk files as described in your readme. (and/or take info from cyanogen/lineagos) -- <I can help more, ask>
note: you probably don't need to take the configs from LineageOS and put them into your .mk files. However, if you do need to get more configs then you should get a big fat message when you type make 'modulename'. At first only edit .mk files as described by vendor device source readme file.
===>] Merge in Hardware drivers and etc [<===possibly unnecessary depends what you're doing
9. Obtain a copy of the firmware for your device that matches the version of the source code you are able to download from your vendor.
for me that was Build Number: MMB29K.N920AUCU2BPE6 but your mileage will almost certainly vary!
10. Download https://github.com/anestisb/android-simg2img
11. Unzip it right in your download folder, open the folder and then 'open in terminal'
12. Make it and then move it a directory in your path. Warning: My command puts in in the Ubuntu default /bin folder.
Code:
make
sudo mv append2simg img2simg simg2img simg2simg simg_dump.py /bin
13. Uncompress the AP file from the matching firmware and extract the system.img into it's own directory
then select that folder, right click, open in terminal
Code:
simg2img system.img sys.raw
mkdir sys
sudo mount -t ext4 -o loop sys.raw sys/
14. A drive mounted, look on your task bar it should've wiggled too. Copy the etc and vendor folders into the main folder of the sources we are merging
Click to expand...
Click to collapse
And where is exactly the main folder? Sorry, Im just confused
DigitalDoraemon said:
And where is exactly the main folder? Sorry, Im just confused
Click to expand...
Click to collapse
it's no problem this stuff isn't easy to just figure out on your own. remember to substitute droidvoider for your ubuntu user name
In this example my sources are on my desktop in a folder named Android_6.01_r1
Sources for toolbox for example:
/home/droidvoider/Desktop/Android_6.01_r1/system/core/toolbox/<sources will be here including Android.mk>
Script for modules, including toolbox
/home/droidvoider/Desktop/Android_6.01_r1/Makefile <--- this is our modules script, if you will
<open a terminal in the above folder then use that Makefile like so>
make toolbox <---- this will compile only what is needed to compile the module 'toolbox' (this takes a minute)
Out export folder we decided in ./home/droidvoider/bashrc
/home/droidvoider/Android_Build_Out/Android_6.01_r1/target/product/generic/system/bin
Anybody, please compile grep utility for arm and x86... Minimum Platform Version Android 4.0.3, API Level - 15
Thanks
Great & useful .
Hey guys!
I tried building LineageOS 15.1 from source. No issues here, works great!
But here is the problem: I now want to include an app I developed into the system build.
Earlier, I did this by adding the files to the BUILD_DIR/packages/apps/<App name> directory. But to include it in the system, I had to rebuild the ROM from scratch.
The app uses an Android.mk file and not Gradle.
Also, if I modify an existing source file (say Activity.java), then how would I proceed, short of rebuilding the ROM?
I wanted to know if there is a more efficient way to build a part of the system. Any help would be appreciated.
Thank You
EDIT:
Found the answer. For anyone who needs it:
Note: This applies only if you have already built the system once and haven't deleted the output files.
Open the Android.mk file in the source tree that you want to build.
Find a line LOCAL_MODULE := <module_name>
Go to the project root folder.
Enter the following lines in the terminal:
Code:
$ source build/envsetup.sh
$ breakfast <device_name>
$ mka <module_name>
Then, to build the flashable zip:
Code:
$ brunch <device_name>