Governor & Noop Scheduler Test - HTC Desire S

NOW A MEGA THREAD IN PROGRESS AIMING TO ANSWER ALL QUESTIONS ON GOVERNORS AND IO SCHEDULERS BEFORE THEY'RE ASKED ​
EDIT* I have now decided to turn this into a work in progress mega thread on governors and io schedulers , thanks to enigmaamit and suku_patel_22
well i was bored and couldnt be bothered revising so i thought i'd do an experiment into speeding my phone up and also prolonging battery life.
firstly i'm on endymion 3.5 right now.
i tested and deadline io schedulers as they're the best (arguably)
i also tested at two frequencies (i'm not a fan of heavy OC)
two governors reaper and virtuous as if your on endy your likely using one of the two
all tests were done with quadrant benchmark so yes someone is going to say the results mean nothing lol but you will see my conclusion in a second.
CPU Max: 998400
IO: Noop
virtuous score: 1)1685
2)1765
Reaper score: 1)1707
2)1760
IO: Deadline
Virtuous Score: 1)1725
2)1799
Reaper Score: 1)1775
2)1664
CPU Max: 1075200
IO: Noop
virtuous score: 1)1785
2)1850
Reaper score: 1)1839
2)1789
IO: Deadline
Virtuous Score: 1)1840
2)1919
Reaper Score: 1)1834
2)1832
Virtuous Average:1796
Reaper Average:1775
Noop Average:1773
Deadline Average:1799
Best combo: Virtuous (barely any difference) + Deadline (again barely any difference
Knowing this i have switched from reaper and noop to virtuous and deadline but the difference is marginal but the highest score of all my trials was recorded on the latter configuration so the hope is that i will see some slight performance increases mainly playing games like temple run that get occasional lag.. also now you can see the differences or lack of them between the things as alot of people ask what scheduler is best and which governor is best
For a complete breakdown and explanation of almost every governor you will encounter on a desire s and most other android devices see post 5 http://forum.xda-developers.com/showpost.php?p=25665108&postcount=5 (taken from droidphiles post in the galaxy s 2 section where most of us wont find it)
The 6th post (http://forum.xda-developers.com/showpost.php?p=25665140&postcount=6) explains IO Schedulers again taken from droidphile, in short noop deadline and sio are the best, VR can give you an impressive benchmark score but in reality does no good and is very unreliable/unstable. Deadline appears better than noop up until the cpu becomes under strain at which point you may have complications. SIO is probably the best IF you don't mind slow read speeds off your micro-SD

Great going. Maybe you can try out a few more combinations - like with the default On Demand, Smartass, etc as well as different IO schedulers. Maybe add AnTuTu and Linpack to the fray. This thread could be a useful one for everyone with doubts regarding performance parameters on different setups.
Once again, good thread. Thanks.

Great thread, antutu benchmarks excluding sdcard test would be the best tool to compare performance.
Sent from a Desire S waiting for Kernel 3. WAKE UP HTC!!!!

i'll try out some more tomorrow, i'm slightly cautious of the other IO Schedulers, mainly i think sio or vr can't remember which but people reported wiped sd cards and i cant be bothered to back up my 32gb as its class 4 *sigh*
i think i'm going to try out savagedzen, scary on demand and smartass, i'm staying away from ones like performance that tend to keep the cpu working at the maximum value set

1) Ondemand
2) Ondemandx
3) Conservative
4) Interactive
5) Interactivex
6) Lulzactive
7) Smartass
8) SmartassV2
9) Intellidemand
10) Lazy
11) Lagfree
12) Lionheart
13) LionheartX
14) Brazilianwax
15) SavagedZen
16) Userspacce
17) Powersave
18) Performance
1) Ondemand:
Default governor in almost all stock kernels. One main goal of the ondemand governor is to switch to max frequency as soon as there is a CPU activity detected to ensure the responsiveness of the system. (You can change this behavior using smooth scaling parameters, refer Siyah tweaks at the end of 3rd post.) Effectively, it uses the CPU busy time as the answer to "how critical is performance right now" question. So Ondemand jumps to maximum frequency when CPU is busy and decreases the frequency gradually when CPU is less loaded/apporaching idle. Even though many of us consider this a reliable governor, it falls short on battery saving and performance on default settings. One potential reason for ondemand governor being not very power efficient is that the governor decide the next target frequency by instant requirement during sampling interval. The instant requirement can response quickly to workload change, but it does not usually reflect workload real CPU usage requirement in a small longer time and it possibly causes frequently change between highest and lowest frequency.
2) Ondemandx:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3) Conservative:
A slower Ondemand which scales up slowly to save battery. The conservative governor is based on the ondemand governor. It functions like the Ondemand governor by dynamically adjusting frequencies based on processor utilization. However, the conservative governor increases and decreases CPU speed more gradually. Simply put, this governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. Conservative governor aims to dynamically adjust the CPU frequency to current utilization, without jumping to max frequency. The sampling_down_factor value acts as a negative multiplier of sampling_rate to reduce the frequency that the scheduler samples the CPU utilization. For example, if sampling_rate equal to 20,000 and sampling_down_factor is 2, the governor samples the CPU utilization every 40,000 microseconds.
4) Interactive:
Can be considered a faster ondemand. So more snappier, less battery. Interactive is designed for latency-sensitive, interactive workloads. Instead of sampling at every interval like ondemand, it determines how to scale up when CPU comes out of idle. The governor has the following advantages: 1) More consistent ramping, because existing governors do their CPU load sampling in a workqueue context, but interactive governor does this in a timer context, which gives more consistent CPU load sampling. 2) Higher priority for CPU frequency increase, thus giving the remaining tasks the CPU performance benefit, unlike existing governors which schedule ramp-up work to occur after your performance starved tasks have completed. Interactive It's an intelligent Ondemand because of stability optimizations. Why??
Sampling the CPU load every X ms (like Ondemand) can lead to under-powering the CPU for X ms, leading to dropped frames, stuttering UI, etc. Instead of sampling the CPU at a specified rate, the interactive governor will check whether to scale the CPU frequency up soon after coming out of idle. When the CPU comes out of idle, a timer is configured to fire within 1-2 ticks. If the CPU is very busy between exiting idle and when the timer fires, then we assume the CPU is underpowered and ramp to max frequency.
5) Interactivex:
This is an Interactive governor with a wake profile. More battery friendly than interactive.
6) Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
Example:
Consider
inc_cpu_load=70
pump_up_step=2
pump_down_step=1
If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps - to 800.
If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step - to 1000.
7) Smartass:
Result of Erasmux rewriting the complete code of interactive governor. Main goal is to optimize battery life without comprising performance. Still, not as battery friendly as smartassV2 since screen-on minimum frequency is greater than frequencies used during screen-off. Smartass would jump up to highest frequency too often as well.
8) SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
9) Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors )
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
10) Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
11) Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
12) Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To 'experience' Lionheart using conservative, try these tweaks:
sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe).
up_threshold:60
down_threshold:30
freq_step:5
Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
13) LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
14) Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery.
15) SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
16) Userspace:
Instead of automatically determining frequencies, lets user set frequencies.
17) Powersave:
Locks max frequency to min frequency. Can not be used as a screen-on or even screen-off (if scaling min frequency is too low).
18) Performance:
Sets min frequency as max frequency. Use this while benchmarking!
So, Governors can be categorized into 3/4 on a high level:
1.a) Ondemand Based:
Works on "ramp-up on high load" principle. CPU busy-time is taken into consideration for scaling decisions. Members: Ondemand, OndemandX, Intellidemand, Lazy, Lagfree.
1.b) Conservative Based:
Members: Conservative, Lionheart, LionheartX
2) Interactive Based:
Works on "make scaling decision when CPU comes out of idle-loop" principle. Members: Interactive, InteractiveX, Lulzactive, Smartass, SmartassV2, Brazilianwax, SavagedZen.
3) Weird Category:
Members: Userspace, Powersave, Performance.
props to droidphile for the great post

again taken from droidphile, this is a very informative post, must read if you want to understand io schedulers
Q. "What purposes does an i/o scheduler serve?"
A.
Minimize hard disk seek latency.
Prioritize I/O requests from processes.
Allocate disk bandwidth for running processes.
Guarantee that certain requests will be served before a deadline.
So in the simplest of simplest form: Kernel controls the disk access using I/O Scheduler.
Q. "What goals every I/O scheduler tries to balance?"
A.
Fairness (let every process have its share of the access to disk)
Performance (try to serve requests close to current disk head position first, because seeking there is fastest)
Real-time (guarantee that a request is serviced in a given time)
Q. "Description, advantages, disadvantages of each I/O Scheduler?"
A.
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
4) BFQ
Instead of time slices allocation by CFQ, BFQ assigns budgets. Disk is granted to an active process until it's budget (number of sectors) expires. BFQ assigns high budgets to non-read tasks. Budget assigned to a process varies over time as a function of it's behavior.
Advantages:
Believed to be very good for usb data transfer rate.
Believed to be the best scheduler for HD video recording and video streaming. (because of less jitter as compared to CFQ and others)
Considered an accurate i/o scheduler.
Achieves about 30% more throughput than CFQ on most workloads.
Disadvantages:
Not the best scheduler for benchmarking.
Higher budget assigned to a process can affect interactivity and increased latency.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6) V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
7) Anticipatory
Based on two facts
i) Disk seeks are really slow.
ii) Write operations can happen whenever, but there is always some process waiting for read operation.
So anticipatory prioritize read operations over write. It anticipates synchronous read operations.
Advantages:
Read requests from processes are never starved.
As good as noop for read-performance on flash drives.
Disadvantages:
'Guess works' might not be always reliable.
Reduced write-performance on high performance disks.
Q. "Best I/O Scheduler?"
A.There is nothing called "best" i/o scheduler. Depending on your usage environment and tasks/apps been run, use different schedulers. That's the best i can suggest.
However, considering the overall performance, battery, reliability and low latency, it is believed that
SIO > Noop > Deadline > VR > BFQ > CFQ, given all schedulers are tweaked and the storage used is a flash device.

Related

[SHARE] CPU Governors and I/O Schedulers Explained 12/23

Hey guys. Thanks to stealthware, -Grift- , and stempox for these information. However, I geared it so that it applies more to the SkyRocket users.
Thanks Appreciated!
CPU Governors Explained:
THE USUAL GOVERNORS
1- OnDemand
2- Interactive
3- Performance
4- Powersave
5- Conservative
6- Userspace
THE OTHER AWESOME GOVERNORS
1- OnDemandX
2- InteractiveX
3- Badass
4- Lagfree
5- Scary
6- Lazy
7- Lionheart
8- SmartassV2
9- Wheatley
10- Intellidemand
11- Lulzactive
I/O Scheduler explained in bottom part of post-
THE USUAL GOVERNORS
1: OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2: Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
3: Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
4: Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
5:Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
6: Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
NOW THE OTHER AWESOME GOVERNORS
1: OnDemandX:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers.
2: InteractiveX:
InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
3: Badass
Badass removes all of this "fast peaking" to the max frequency. On a typical system the cpu won't go above 1080Mhz and therefore use less power. To trigger a frequency increase, the system must run a bit @ 1080MHz with high load, then the frequency is bumped to 1350MHz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 2-5 seconds, depending on the load your system is experiencing).
You can tweak the Phase 2 (1080MHz) and Phase 3 (1350MHz) via sysfs (if you don't know, then just leave it alone)
4: Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
5: Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance.
6: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
7: Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
8: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
9: Wheatley:
in short words this govenor is build on “ondemand” but increases the C4 (the sleep state) state time of the CPU and doing so trying to save juice. So the results show that Wheatley works as intended and ensures that the C4 state is used whenever the task allows a proper efficient usage of the C4 state. For more demanding tasks which cause a large number of wakeups and prevent the efficient usage of the C4 state, the governor resorts to the next best power saving mechanism and scales down the frequency. So with the new highly-flexible Wheatley governor one can have the best of both worlds. Obviously, this governor is only available on multi-core devices.
10: Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors)
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
11: Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
I/O Schedulers Explained
1: Noop:
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2: Deadline:
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3: CFQ:
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
5: SIO:
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6: V(R):
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
Beats finding it in the other forum lol
Sent from my Paranoid SGH-T989
Kernel updated with badass. Can that be added? Is it battery oriented? I know it's a popular choice and I've used it but never knew why
Sent from my SGH-I727 using Tapatalk 2
kchen96 said:
Kernel updated with badass. Can that be added? Is it battery oriented? I know it's a popular choice and I've used it but never knew why
Sent from my SGH-I727 using Tapatalk 2
Click to expand...
Click to collapse
This is copied straight from InstigatorX's post.
Badass removes all of this "fast peaking" to the max frequency. On a typical system the cpu won't go above 1080Mhz and therefore use less power. To trigger a frequency increase, the system must run a bit @ 1080MHz with high load, then the frequency is bumped to 1350MHz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 2-5 seconds, depending on the load your system is experiencing).
jee'sgalaxy said:
Hey guys. Thanks to stealthware, -Grift- , and stempox for these information. However, I geared it so that it applies more to the SkyRocket users who has an AWESOME NEW KERNEL from DAGr8. I'm only relaying the information that applies to this kernel.
CPU Governors Explained:
THE USUAL GOVERNORS
1: OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2: Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
3: Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
4:Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
5: Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
7: Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
NOW THE OTHER AWESOME GOVERNORS
1: Badass
Badass removes all of this "fast peaking" to the max frequency. On a typical system the cpu won't go above 1080Mhz and therefore use less power. To trigger a frequency increase, the system must run a bit @ 1080MHz with high load, then the frequency is bumped to 1350MHz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 2-5 seconds, depending on the load your system is experiencing).
You can tweak the Phase 2 (1080MHz) and Phase 3 (1350MHz) via sysfs (if you don't know, then just leave it alone)
2: InteractiveX:
InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
3: Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
4: SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq.
5: Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance.
6: Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
7: Wheatley:
in short words this govenor is build on “ondemand” but increases the C4 state time of the CPU and doing so trying to save juice. So the results show that Wheatley works as intended and ensures that the C4 state is used whenever the task allows a proper efficient usage of the C4 state. For more demanding tasks which cause a large number of wakeups and prevent the efficient usage of the C4 state, the governor resorts to the next best power saving mechanism and scales down the frequency. So with the new highly-flexible Wheatley governor one can have the best of both worlds. Obviously, this governor is only available on multi-core devices.
8: Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors)
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
9: Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
I/O Schedulers Explained
1: Noop:
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2: Deadline:
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3: CFQ:
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
5: SIO:
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6: V(R):
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
Click to expand...
Click to collapse
Thank alot for this info it really helped with my overheating,
crashpsycho said:
Thank alot for this info it really helped with my overheating,
Click to expand...
Click to collapse
Glad to have helped man!
Found some extra info you might want to add to the op here... http://forum.xda-developers.com/showthread.php?t=1767797
Sent from my SAMSUNG-SGH-I727 using Tapatalk 2
bps119 said:
Found some extra info you might want to add to the op here... http://forum.xda-developers.com/showthread.php?t=1767797
Sent from my SAMSUNG-SGH-I727 using Tapatalk 2
Click to expand...
Click to collapse
Thanks. Updated OP
What about 'row' scheduler?
First post ever!
What bout the row I/O scheduler? I saw it on every CM10.1 based ROM I tried.
Thank you.
Bleedos said:
First post ever!
What bout the row I/O scheduler? I saw it on every CM10.1 based ROM I tried.
Thank you.
Click to expand...
Click to collapse
Bit more information on different schedulers, including ROW:
http://forum.xda-developers.com/showthread.php?p=23885668
thnx alot maaan
thnx alot bro...
from the above list, can anyone suggest the best cpu settings, or the one you use now...
thx
thx alot
u really demonstrated all the info in a easy way
:good::good::good::good::good:
Super superb! Well done and thanks.
Great article! :good:
I also have Zen I/O Scheduler which is not explained in this thread!?
psydex said:
Great article! :good:
I also have Zen I/O Scheduler which is not explained in this thread!?
Click to expand...
Click to collapse
Look at my thread: http://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-governors-o-t3048957
Good jobs!! Thanks alot
Thanks bro.
Sent from my SM-N910C using Tapatalk

CPU Governors and I/O Schedulers Explanation!!!

Hi friends I want to explain about: CPU Governors and I/O Schedulers...
Just Re Posting a thread found in ace forum.. May be useful..
CPU Governors:
1. OnDemand Governor:
This governor has a hair trigger for boosting clockspeed to the maximum speed set by the user. If the CPU load placed by the user abates, the OnDemand governor will slowly step back down through the kernel's frequency steppings until it settles at the lowest possible frequency, or the user executes another task to demand a ramp.
OnDemand has excellent interface fluidity because of its high-frequency bias, but it can also have a relatively negative effect on battery life versus other governors. OnDemand is commonly chosen by smartphone manufacturers because it is well-tested, reliable, and virtually guarantees the smoothest possible performance for the phone. This is so because users are vastly more likely to ***** about performance than they are the few hours of extra battery life another governor could have granted them.
This final fact is important to know before you read about the Interactive governor: OnDemand scales its clockspeed in a work queue context. In other words, once the task that triggered the clockspeed ramp is finished, OnDemand will attempt to move the clockspeed back to minimum. If the user executes another task that triggers OnDemand's ramp, the clockspeed will bounce from minimum to maximum. This can happen especially frequently if the user is multi-tasking. This, too, has negative implications for battery life.
2. Performance Governor:
This locks the phone's CPU at maximum frequency. While this may sound like an ugly idea, there is growing evidence to suggest that running a phone at its maximum frequency at all times will allow a faster race-to-idle. Race-to-idle is the process by which a phone completes a given task, such as syncing email, and returns the CPU to the extremely efficient low-power state. This still requires extensive testing, and a kernel that properly implements a given CPU's C-states (low power states).
3. Powersave Governor:
The opposite of the Performance governor, the Powersave governor locks the CPU frequency at the lowest frequency set by the user.
4. Conservative Governor:
This biases the phone to prefer the lowest possible clockspeed as often as possible. In other words, a larger and more persistent load must be placed on the CPU before the conservative governor will be prompted to raise the CPU clockspeed. Depending on how the developer has implemented this governor, and the minimum clockspeed chosen by the user, the conservative governor can introduce choppy performance. On the other hand, it can be good for battery life.
5. Userspace Governor:
This governor, exceptionally rare for the world of mobile devices, allows any program executed by the user to set the CPU's operating frequency. This governor is more common amongst servers or desktop PCs where an application (like a power profile app) needs privileges to set the CPU clockspeed.
6. Min Max
Well this governor makes use of only min & maximum frequency based on workload... no intermediate frequencies are used.
7. Interactive Governor:
Much like the OnDemand governor, the Interactive governor dynamically scales CPU clockspeed in response to the workload placed on the CPU by the user. This is where the similarities end. Interactive is significantly more responsive than OnDemand, because it's faster at scaling to maximum frequency.
8. InteractiveX Governor:
InteractiveX governor is based heavily on the Interactive governor, enhanced with tuned timer parameters to better balance battery vs. performance. The InteractiveX governor's defining feature, however, is that it locks the CPU frequency to the user's lowest defined speed when the screen is off.
9. Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
10. SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq.
11. Smartass
Is based on the concept of the interactive governor.
I have always agreed that in theory the way interactive works – by taking over the idle loop – is very attractive. I have never managed to tweak it so it would behave decently in real life. Smartass is a complete rewrite of the code plus more. I think its a success. Performance is on par with the “old” minmax and I think smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies
12. Scary
A new governor wrote based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it's above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance.
13. Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery
14. SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
15. Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
16. Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source.
The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
I/O Schedulers:
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6) V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable. :good:
Hey thanx a lot for this usefully thread..
can u tell me which CPU Governors and I/O Schedulers are good amongst these all to set? i am using Official CM7.
Rohit02 said:
Hey thanx a lot for this usefully thread..
can u tell me which CPU Governors and I/O Schedulers are good amongst these all to set? i am using Official CM7.
Click to expand...
Click to collapse
That depends on ur kernel Pal....:highfive:
Mention it...will try......
nightwing90 said:
That depends on ur kernel Pal....:highfive:
Mention it...will try......
Click to expand...
Click to collapse
Kernel version : 2.6.35.14_CM+Tjstyle
Baseband : DDKQ5
:good:
thank you,helped me so much

[INFO]Governors and I/O Schedulers

All Credits : Droidphile - please spare some time to thank hin - its the least you can do
NOTE:Now you don't need to ask which is the best battery saving /balanced /most power hungry setting - read and find out by yourself
GOVERNORS
1) Ondemand:
Default governor in almost all stock kernels. One main goal of the ondemand governor is to switch to max frequency as soon as there is a CPU activity detected to ensure the responsiveness of the system. (You can change this behavior using smooth scaling parameters, refer Siyah tweaks at the end of 3rd post.) Effectively, it uses the CPU busy time as the answer to "how critical is performance right now" question. So Ondemand jumps to maximum frequency when CPU is busy and decreases the frequency gradually when CPU is less loaded/apporaching idle. Even though many of us consider this a reliable governor, it falls short on battery saving and performance on default settings. One potential reason for ondemand governor being not very power efficient is that the governor decide the next target frequency by instant requirement during sampling interval. The instant requirement can response quickly to workload change, but it does not usually reflect workload real CPU usage requirement in a small longer time and it possibly causes frequently change between highest and lowest frequency.
2) Ondemandx:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
3) Conservative:
A slower Ondemand which scales up slowly to save battery. The conservative governor is based on the ondemand governor. It functions like the Ondemand governor by dynamically adjusting frequencies based on processor utilization. However, the conservative governor increases and decreases CPU speed more gradually. Simply put, this governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. Conservative governor aims to dynamically adjust the CPU frequency to current utilization, without jumping to max frequency. The sampling_down_factor value acts as a negative multiplier of sampling_rate to reduce the frequency that the scheduler samples the CPU utilization. For example, if sampling_rate equal to 20,000 and sampling_down_factor is 2, the governor samples the CPU utilization every 40,000 microseconds.
4) Interactive:
Can be considered a faster ondemand. So more snappier, less battery. Interactive is designed for latency-sensitive, interactive workloads. Instead of sampling at every interval like ondemand, it determines how to scale up when CPU comes out of idle. The governor has the following advantages: 1) More consistent ramping, because existing governors do their CPU load sampling in a workqueue context, but interactive governor does this in a timer context, which gives more consistent CPU load sampling. 2) Higher priority for CPU frequency increase, thus giving the remaining tasks the CPU performance benefit, unlike existing governors which schedule ramp-up work to occur after your performance starved tasks have completed. Interactive It's an intelligent Ondemand because of stability optimizations. Why??
Sampling the CPU load every X ms (like Ondemand) can lead to under-powering the CPU for X ms, leading to dropped frames, stuttering UI, etc. Instead of sampling the CPU at a specified rate, the interactive governor will check whether to scale the CPU frequency up soon after coming out of idle. When the CPU comes out of idle, a timer is configured to fire within 1-2 ticks. If the CPU is very busy between exiting idle and when the timer fires, then we assume the CPU is underpowered and ramp to max frequency.
5) Interactivex:
This is an Interactive governor with a wake profile. More battery friendly than interactive.
6) Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
Example:
Consider
inc_cpu_load=70
pump_up_step=2
pump_down_step=1
If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps - to 800.
If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step - to 1000.
7) Lulzactiveq:
Lulzactiveq is a modified lulzactive governor authored by XDA member robertobsc and is adapted in Siyah kernel for GS2 and GS3. Lulzactiveq aims to optimize the second version of luzactive from Tegrak by a) providing an extra parameter (dec_cpu_load) to make scaling down more sensible, and b) incorporating hotplug logic to the governor. Luzactiveq is the first ever interactive based governor with hotplugging logic inbuilt (atleast the first of its kind for the exynos platform). When CPU comes out of idle loop and it's time to make a scaling decision, if load >= inc_cpu_load CPU is scaled up (like original luzactiveq) and if load <dec_cpu_load, CPU is scaled down. This possibly eliminates the strict single cut-off frequency for luzactiveq to make CPU scaling decisions. Also, stand hotplug logic runs as a separate thread with the governor so that external hotplugging logic is not required to control hotplug in and out (turn On and Off) CPU cores in multi core devices like GS2 or GS3. Only a multi core aware governor makes real sense on muti-core devices. Lulzactiveq and pegasusq aims to do that.
8) Smartass:
Result of Erasmux rewriting the complete code of interactive governor. Main goal is to optimize battery life without comprising performance. Still, not as battery friendly as smartassV2 since screen-on minimum frequency is greater than frequencies used during screen-off. Smartass would jump up to highest frequency too often as well.
9) SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
10) Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors )
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
11) Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
12) Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
13) Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To 'experience' Lionheart using conservative, try these tweaks:
sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe).
up_threshold:60
down_threshold:30
freq_step:5
Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
14) LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
15) Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery.
16) SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
17) Userspace:
Instead of automatically determining frequencies, lets user set frequencies.
18) Powersave:
Locks max frequency to min frequency. Can not be used as a screen-on or even screen-off (if scaling min frequency is too low).
19) Performance:
Sets min frequency as max frequency. Use this while benchmarking!
So, Governors can be categorized into 3/4 on a high level:
1.a) Ondemand Based:
Works on "ramp-up on high load" principle. CPU busy-time is taken into consideration for scaling decisions. Members: Ondemand, OndemandX, Intellidemand, Lazy, Lagfree.
1.b) Conservative Based:
Members: Conservative, Lionheart, LionheartX
2) Interactive Based:
Works on "make scaling decision when CPU comes out of idle-loop" principle. Members: Interactive, InteractiveX, Lulzactive, Luzactiveq, Smartass, SmartassV2, Brazilianwax, SavagedZen.
3) Weird Category:
Members: Userspace, Powersave, Performance
I/O Schedulers
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
4) BFQ
Instead of time slices allocation by CFQ, BFQ assigns budgets. Disk is granted to an active process until it's budget (number of sectors) expires. BFQ assigns high budgets to non-read tasks. Budget assigned to a process varies over time as a function of it's behavior.
Advantages:
Believed to be very good for usb data transfer rate.
Believed to be the best scheduler for HD video recording and video streaming. (because of less jitter as compared to CFQ and others)
Considered an accurate i/o scheduler.
Achieves about 30% more throughput than CFQ on most workloads.
Disadvantages:
Not the best scheduler for benchmarking.
Higher budget assigned to a process can affect interactivity and increased latency.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6) V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
7) Anticipatory
Based on two facts
i) Disk seeks are really slow.
ii) Write operations can happen whenever, but there is always some process waiting for read operation.
So anticipatory prioritize read operations over write. It anticipates synchronous read operations.
Advantages:
Read requests from processes are never starved.
As good as noop for read-performance on flash drives.
Disadvantages:
'Guess works' might not be always reliable.
Reduced write-performance on high performance disks.
Q. "Best I/O Scheduler?"
A.There is nothing called "best" i/o scheduler. Depending on your usage environment and tasks/apps been run, use different schedulers. That's the best i can suggest.
However, considering the overall performance, battery, reliability and low latency, it is believed that
SIO > Noop > Deadline > VR > BFQ > CFQ, given all schedulers are tweaked and the storage used is a flash device.
Q. "How do i change I/O schedulers?"
Voltage Control or No Frills from market.
Or init.d script:
echo "scheduler-name" > /sys/block/mmcblk0/queue/scheduler
NOTE: the available governors/io depends on your kernel . Also this list is not complete !
For more info visit : Original thread (-a must visit for the sheer amount of info you can gather from there)
Isn't this just a copy + paste?
Cocafe already gives this link in his thread. Then why this thread?
I do not respond to tech support via PM
Shaaan said:
Isn't this just a copy + paste?
Cocafe already gives this link in his thread. Then why this thread?
I do not respond to tech support via PM
Click to expand...
Click to collapse
Yes it is copy paste - i have mentioned that in the thread too!
If you want me to close this- am happy to ask the mods to do so .(or you can report too)
Again no offense meant ! Sorry and thanks for pointing out .
Why don't you write a guide that is more device specific?
I mean people are asking how to save battery, which is teh best performance governor and stuff!
So write a guide which explains these things!
I do not respond to tech support via PM
Shaaan said:
Why don't you write a guide that is more device specific?
I mean people are asking how to save battery, which is teh best performance governor and stuff!
So write a guide which explains these things!
I do not respond to tech support via PM
Click to expand...
Click to collapse
Okay then will edit this one itself and try to bring up a guide like you've mentioned after i play around with all governors for some time
Thank you

[INFO] ***Kernel 101***

If you spend any time reading Android forums, blogs, how-to posts or online discussion you'll soon hear people talking about the kernel. A kernel isn't something unique to Android -- iOS and MacOS have one, Windows has one, BlackBerry's QNX has one, in fact all high level operating systems have one. The one we're interested in is Linux, as it's the one Android uses. Let's try to break down what it is and what it does.
Android devices use the Linux kernel, but it's not the exact same kernel other Linux-based operating systems use. There's a lot of Android specific code built in, and Google's Android kernel maintainers have their work cut out for them. OEMs have to contribute as well, because they need to develop hardware drivers for the parts they're using for the kernel version they're using. This is why it takes a while for independent Android developers and hackers to port new versions to older devices and get everything working. Drivers written to work with the Gingerbread kernel on a phone won't necessarily work with the Ice Cream Sandwich kernel. And that's important, because one of the kernel's main functions is to control the hardware. It's a whole lot of source code, with more options while building it than you can imagine, but in the end it's just the intermediary between the hardware and the software.
When software needs the hardware to do anything, it sends a request to the kernel. And when we say anything, we mean anything. From the brightness of the screen, to the volume level, to initiating a call through the radio, even what's drawn on the display is ultimately controlled by the kernel. For example -- when you tap the search button on your phone, you tell the software to open the search application. What happens is that you touched a certain point on the digitizer, which tells the software that you've touched the screen at those coordinates. The software knows that when that particular spot is touched, the search dialog is supposed to open. The kernel is what tells the digitizer to look (or listen, events are "listened" for) for touches, helps figure out where you touched, and tells the system you touched it. In turn, when the system receives a touch event at a specific point from the kernel (through the driver) it knows what to draw on your screen. Both the hardware and the software communicate both ways with the kernel, and that's how your phone knows when to do something. Input from one side is sent as output to the other, whether it's you playing Angry Birds, or connecting to your car's Bluetooth.
It sounds complicated, and it is. But it's also pretty standard computer logic -- there's an action of some sort generated for every event. Without the kernel to accept and send information, developers would have to write code for every single event for every single piece of hardware in your device. With the kernel, all they have to do is communicate with it through the Android system API's, and hardware developers only have to make the device hardware communicate with the kernel. The good thing is that you don't need to know exactly how or why the kernel does what it does, just understanding that it's the go-between from software to hardware gives you a pretty good grasp of what's happening under the glass.
Governors
Kernel Governers
1) Ondemand
2) Ondemandx
3) Conservative
4) Interactive
5) Interactivex
6) Lulzactive
7) Lulzactiveq
8) Smartass
9) SmartassV2
10) Intellidemand
11) Lazy
12) Lagfree
13) Lionheart
14) LionheartX
15) Brazilianwax
16) SavagedZen
17) Userspacce
18) Powersave
19) Performance
1) Ondemand:
Default governor in almost all stock kernels. One main goal of the ondemand governor is to switch to max frequency as soon as there is a CPU activity detected to ensure the responsiveness of the system. (You can change this behavior using smooth scaling parameters, refer Siyah tweaks at the end of 3rd post.) Effectively, it uses the CPU busy time as the answer to "how critical is performance right now" question. So Ondemand jumps to maximum frequency when CPU is busy and decreases the frequency gradually when CPU is less loaded/apporaching idle. Even though many of us consider this a reliable governor, it falls short on battery saving and performance on default settings. One potential reason for ondemand governor being not very power efficient is that the governor decide the next target frequency by instant requirement during sampling interval. The instant requirement can response quickly to workload change, but it does not usually reflect workload real CPU usage requirement in a small longer time and it possibly causes frequently change between highest and lowest frequency.
Click to expand...
Click to collapse
2) Ondemandx:
Basically an ondemand with suspend/wake profiles. This governor is supposed to be a battery friendly ondemand. When screen is off, max frequency is capped at 500 mhz. Even though ondemand is the default governor in many kernel and is considered safe/stable, the support for ondemand/ondemandX depends on CPU capability to do fast frequency switching which are very low latency frequency transitions. I have read somewhere that the performance of ondemand/ondemandx were significantly varying for different i/o schedulers. This is not true for most of the other governors. I personally feel ondemand/ondemandx goes best with SIO I/O scheduler.
Click to expand...
Click to collapse
3) Conservative:
A slower Ondemand which scales up slowly to save battery. The conservative governor is based on the ondemand governor. It functions like the Ondemand governor by dynamically adjusting frequencies based on processor utilization. However, the conservative governor increases and decreases CPU speed more gradually. Simply put, this governor increases the frequency step by step on CPU load and jumps to lowest frequency on CPU idle. Conservative governor aims to dynamically adjust the CPU frequency to current utilization, without jumping to max frequency. The sampling_down_factor value acts as a negative multiplier of sampling_rate to reduce the frequency that the scheduler samples the CPU utilization. For example, if sampling_rate equal to 20,000 and sampling_down_factor is 2, the governor samples the CPU utilization every 40,000 microseconds.
Click to expand...
Click to collapse
4) Interactive:
Can be considered a faster ondemand. So more snappier, less battery. Interactive is designed for latency-sensitive, interactive workloads. Instead of sampling at every interval like ondemand, it determines how to scale up when CPU comes out of idle. The governor has the following advantages: 1) More consistent ramping, because existing governors do their CPU load sampling in a workqueue context, but interactive governor does this in a timer context, which gives more consistent CPU load sampling. 2) Higher priority for CPU frequency increase, thus giving the remaining tasks the CPU performance benefit, unlike existing governors which schedule ramp-up work to occur after your performance starved tasks have completed. Interactive It's an intelligent Ondemand because of stability optimizations. Why??
Sampling the CPU load every X ms (like Ondemand) can lead to under-powering the CPU for X ms, leading to dropped frames, stuttering UI, etc. Instead of sampling the CPU at a specified rate, the interactive governor will check whether to scale the CPU frequency up soon after coming out of idle. When the CPU comes out of idle, a timer is configured to fire within 1-2 ticks. If the CPU is very busy between exiting idle and when the timer fires, then we assume the CPU is underpowered and ramp to max frequency.
Click to expand...
Click to collapse
5) Interactivex:
This is an Interactive governor with a wake profile. More battery friendly than interactive.
Click to expand...
Click to collapse
6) Lulzactive:
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites.
Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency.
New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down.
When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down.
Example:
Consider
inc_cpu_load=70
pump_up_step=2
pump_down_step=1
If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps - to 800.
If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step - to 1000.
Click to expand...
Click to collapse
7) Lulzactiveq:
Lulzactiveq is a modified lulzactive governor authored by XDA member robertobsc and is adapted in Siyah kernel for GS2 and GS3. Lulzactiveq aims to optimize the second version of luzactive from Tegrak by a) providing an extra parameter (dec_cpu_load) to make scaling down more sensible, and b) incorporating hotplug logic to the governor. Luzactiveq is the first ever interactive based governor with hotplugging logic inbuilt (atleast the first of its kind for the exynos platform). When CPU comes out of idle loop and it's time to make a scaling decision, if load >= inc_cpu_load CPU is scaled up (like original luzactiveq) and if load <dec_cpu_load, CPU is scaled down. This possibly eliminates the strict single cut-off frequency for luzactiveq to make CPU scaling decisions. Also, stand hotplug logic runs as a separate thread with the governor so that external hotplugging logic is not required to control hotplug in and out (turn On and Off) CPU cores in multi core devices like GS2 or GS3. Only a multi core aware governor makes real sense on muti-core devices. Lulzactiveq and pegasusq aims to do that.
Click to expand...
Click to collapse
8) Smartass:
Result of Erasmux rewriting the complete code of interactive governor. Main goal is to optimize battery life without comprising performance. Still, not as battery friendly as smartassV2 since screen-on minimum frequency is greater than frequencies used during screen-off. Smartass would jump up to highest frequency too often as well.
Click to expand...
Click to collapse
9) SmartassV2:
Version 2 of the original smartass governor from Erasmux. Another favorite for many a people. The governor aim for an "ideal frequency", and ramp up more aggressively towards this freq and less aggressive after. It uses different ideal frequencies for screen on and screen off, namely awake_ideal_freq and sleep_ideal_freq. This governor scales down CPU very fast (to hit sleep_ideal_freq soon) while screen is off and scales up rapidly to awake_ideal_freq (500 mhz for GS2 by default) when screen is on. There's no upper limit for frequency while screen is off (unlike Smartass). So the entire frequency range is available for the governor to use during screen-on and screen-off state. The motto of this governor is a balance between performance and battery.
Click to expand...
Click to collapse
10) Intellidemand:
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that's based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is 'idling' (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some 'traces' of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors )
To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
Click to expand...
Click to collapse
11) Lazy:
This governor from Ezekeel is basically an ondemand with an additional parameter min_time_state to specify the minimum time CPU stays on a frequency before scaling up/down. The Idea here is to eliminate any instabilities caused by fast frequency switching by ondemand. Lazy governor polls more often than ondemand, but changes frequency only after completing min_time_state on a step overriding sampling interval. Lazy also has a screenoff_maxfreq parameter which when enabled will cause the governor to always select the maximum frequency while the screen is off.
Click to expand...
Click to collapse
12) Lagfree:
Lagfree is similar to ondemand. Main difference is it's optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there's a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
Click to expand...
Click to collapse
13) Lionheart:
Lionheart is a conservative-based governor which is based on samsung's update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To 'experience' Lionheart using conservative, try these tweaks:
sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe).
up_threshold:60
down_threshold:30
freq_step:5
Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
Click to expand...
Click to collapse
14) LionheartX
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
Click to expand...
Click to collapse
15) Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery.
Click to expand...
Click to collapse
16) SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
Click to expand...
Click to collapse
17) Userspace:
Instead of automatically determining frequencies, lets user set frequencies.
Click to expand...
Click to collapse
18) Powersave:
Locks max frequency to min frequency. Can not be used as a screen-on or even screen-off (if scaling min frequency is too low).
Click to expand...
Click to collapse
19) Performance:
Sets min frequency as max frequency.
2. I/O SCHEDULERS
Q. "What purposes does an i/o scheduler serve?" A.
Minimize hard disk seek latency.
Prioritize I/O requests from processes.
Allocate disk bandwidth for running processes.
Guarantee that certain requests will be served before a deadline.
So in the simplest of simplest form: Kernel controls the disk access using I/O Scheduler.
Q. "What goals every I/O scheduler tries to balance?" A.
Fairness (let every process have its share of the access to disk)
Performance (try to serve requests close to current disk head position first, because seeking there is fastest)
Real-time (guarantee that a request is serviced in a given time)
Q. "Description, advantages, disadvantages of each I/O Scheduler?" A.
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
Serves I/O requests with least number of cpu cycles. (Battery friendly?)
Best for flash drives since there is no seeking penalty.
Good throughput on db systems.
Disadvantages:
Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
Nearly a real time scheduler.
Excels in reducing latency of any given single I/O.
Best scheduler for database access and queries.
Bandwidth requirement of a process - what percentage of CPU it needs, is easily calculated.
Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the 'parent' process. V2 of CFQ has some fixes which solves process' i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
Considered to deliver a balanced i/o performance.
Easiest to tune.
Excels on multiprocessor systems.
Best database system performance after deadline.
Disadvantages:
Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
4) BFQ
Instead of time slices allocation by CFQ, BFQ assigns budgets. Disk is granted to an active process until it's budget (number of sectors) expires. BFQ assigns high budgets to non-read tasks. Budget assigned to a process varies over time as a function of it's behavior.
Advantages:
Believed to be very good for usb data transfer rate.
Believed to be the best scheduler for HD video recording and video streaming. (because of less jitter as compared to CFQ and others)
Considered an accurate i/o scheduler.
Achieves about 30% more throughput than CFQ on most workloads.
Disadvantages:
Not the best scheduler for benchmarking.
Higher budget assigned to a process can affect interactivity and increased latency.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
Simple, so reliable.
Minimized starvation of requests.
Disadvantages:
Slow random-read speeds on flash drives, compared to other schedulers.
Sequential-read speeds on flash drives also not so good.
6)
V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it's distance from last request.
Advantages:
May be best for benchmarking because at the peak of it's 'form' VR performs best.
Disadvantages:
Performance fluctuation results in below-average performance at times.
Least reliable/most unstable.
Q. "Best I/O Scheduler?"
A.There is nothing called "best" i/o scheduler. Depending on your usage environment and tasks/apps been run, use different schedulers. That's the best i can suggest.
However, considering the overall performance, battery, reliability and low latency, it is believed that
SIO > Noop > Deadline > VR > BFQ > CFQ, given all schedulers are tweaked and the storage used is a flash device.
Credits
Internet
This thread http://forum.xda-developers.com/showthread.php?t=1369817
Nice info dude.......
Sent from my GT-I9100 using xda premium
Brilliant work buddy!!
Thanks
Started from the bottom
So, what next..??
BTW, you must made a Thread in General section of android. Containing all links of your work.:highfive:
Disturbed™ said:
So, what next..??
BTW, you must made a Thread in General section of android. Containing all links of your work.:highfive:
Click to expand...
Click to collapse
Guys, you all have made me Tha TechnoCrat from kartiknnn. I am forever indebted to you all. Especially vikesh. My elder brother.
:thumbup:
Started from the bottom
Nice write up
TEAM MiK
MikROMs Since 3/13/11
Good Work Buddy... :good:

Some useful Info about Android Kernel Governors and I/O SCHEDULERS

Hi Guys,
Now that we have multiple number of Custom Kernels its good to know about what kind of benefits we can get from the available Governors & I/O Schedulers
After googling for a while I found some good info which I am sharing with you Guys
1. Kernel Governors
These are the 19 governors we’re talking about.
1) Ondemand
2) Conservative
3) Interactivex
4) Smartass
5) SmartassV2
6) Lagfree
7) Brazilianwax
8) SavagedZen
9) Userspacce
10) Powersave
11) Performance
12)Minmax
13)Scary
14)Lulzactive
15)intellidemand
16)badass
17)Lionheart
18)Lionheartx
19)Virtuous
1) Ondemand:
Available in most kernels, and the default governor in most kernels. When the CPU load reaches a certain point (see “up threshold” in Advanced Settings), ondemand will rapidly scale the CPU up to meet demand, then gradually scale the CPU down when it isn’t needed
2) Conservative:
A slower Ondemand which scales up slowly to save battery. It is similar to the ondemand governor, but will scale the CPU up more gradually to better fit demand. Conservative provides a less responsive experience than ondemand, but can save battery.
3) Interactivex:
This is an Interactive governor with a wake profile. More battery friendly than interactive.
4) Smartass:
based on the concept of the interactive governor. I have always agreed that in theory the way interactive works – by taking over the idle loop – is very attractive.Smartass is a complete rewrite of the code plus more. I think its a success. Performance is on par with the “old” minmax and I think smartass is a bit more responsive. Battery life is hard to quantify precisely but it does spend much more time at the lower frequencies
5) SmartassV2:
SmartassV2 is a governor (controls the frequency of the CPU at each give moment) which like the first smartass is generally based on the implementation of interactive with some major changes and the addition of a built in sleep profile (behaves a bit differently when screen is off vs. on).The smartassV2 improves the very naive scheme which the first smartass had
6) Lagfree:
Lagfree is similar to ondemand. Main difference is it’s optimization to become more battery friendly. Frequency is gracefully decreased and increased, unlike ondemand which jumps to 100% too often. Lagfree does not skip any frequency step while scaling up or down. Remember that if there’s a requirement for sudden burst of power, lagfree can not satisfy that since it has to raise cpu through each higher frequency step from current. Some users report that video playback using lagfree stutters a little.
7) Brazilianwax:
Similar to smartassV2. More aggressive ramping, so more performance, less battery.
8) SavagedZen:
Another smartassV2 based governor. Achieves good balance between performance & battery as compared to brazilianwax.
9) Userspace:
Instead of automatically determining frequencies, lets user set frequencies.
10) Powersave:
runs minimum speed all the time (good for low battery/high temp situations)
11) Performance:
Top speed all the time(better for benchmarking/speed test)
12)Minmax
stays at minimum speed until more speed is needed then goes straight to highest speed
13)Scary
based on conservative with some smartass features, it scales accordingly to conservatives laws. So it will start from the bottom, take a load sample, if it’s above the upthreshold, ramp up only one speed at a time, and ramp down one at a time. It will automatically cap the off screen speeds to 245Mhz, and if your min freq is higher than 245mhz, it will reset the min to 120mhz while screen is off and restore it upon screen awakening, and still scale accordingly to conservatives laws. So it spends most of its time at lower frequencies. The goal of this is to get the best battery life with decent performance. It will give the same performance as conservative right now, it will get tweaked over time.
14) Lulzactive
This new find from Tegrak is based on Interactive & Smartass governors and is one of the favorites. Old Version: When workload is greater than or equal to 60%, the governor scales up CPU to next higher step. When workload is less than 60%, governor scales down CPU to next lower step. When screen is off, frequency is locked to global scaling minimum frequency. New Version: Three more user configurable parameters: inc_cpu_load, pump_up_step, pump_down_step. Unlike older version, this one gives more control for the user. We can set the threshold at which governor decides to scale up/down. We can also set number of frequency steps to be skipped while polling up and down. When workload greater than or equal to inc_cpu_load, governor scales CPU pump_up_step steps up. When workload is less than inc_cpu_load, governor scales CPU down pump_down_step steps down. Example: Consider inc_cpu_load=70 pump_up_step=2 pump_down_step=1 If current frequency=200, Every up_sampling_time Us if cpu load >= 70%, cpu is scaled up 2 steps – to 800. If current frequency =1200, Every down_sampling_time Us if cpu load < 70%, cpu is scaled down 1 step – to 1000.
15) Intellidemand
Intellidemand aka Intelligent Ondemand from Faux is yet another governor that’s based on ondemand. Unlike what some users believe, this governor is not the replacement for OC Daemon (Having different governors for sleep and awake). The original intellidemand behaves differently according to GPU usage. When GPU is really busy (gaming, maps, benchmarking, etc) intellidemand behaves like ondemand. When GPU is ‘idling’ (or moderately busy), intellidemand limits max frequency to a step depending on frequencies available in your device/kernel for saving battery. This is called browsing mode. We can see some ‘traces’ of interactive governor here. Frequency scale-up decision is made based on idling time of CPU. Lower idling time (<20%) causes CPU to scale-up from current frequency. Frequency scale-down happens at steps=5% of max frequency. (This parameter is tunable only in conservative, among the popular governors ) To sum up, this is an intelligent ondemand that enters browsing mode to limit max frequency when GPU is idling, and (exits browsing mode) behaves like ondemand when GPU is busy; to deliver performance for gaming and such. Intellidemand does not jump to highest frequency when screen is off.
16)badass
Badass removes all of this “fast peaking” to the max frequency. On a typical system the cpu won’t go above 918Mhz and therefore stay cool and will use less power. To trigger a frequency increase, the system must run a bit @ 918Mhz with high load, then the frequency is bumped to 1188Mhz. If that is still not enough the governor gives you full throttle. (this transition should not take longer than 2-5 seconds, depending on the load your system is experiencing)
Badass will also take the gpu load into consideration. If the gpu is moderately busy it will bypass the above check and clock the cpu with 1188Mhz. If the gpu is crushed under load, badass will lift the restrictions to the cpu.
17)Lionheart
Lionheart is a conservative-based governor which is based on samsung’s update3 source. Tweaks comes from 1) Knzo 2) Morfic. The original idea comes from Netarchy. See here. The tunables (such as the thresholds and sampling rate) were changed so the governor behaves more like the performance one, at the cost of battery as the scaling is very aggressive.
To ‘experience’ Lionheart using conservative, try these tweaks: sampling_rate:10000 or 20000 or 50000, whichever you feel is safer. (transition latency of the CPU is something below 10ms/10,000uS hence using 10,000 might not be safe). up_threshold:60 down_threshold:30 freq_step:5 Lionheart goes well with deadline i/o scheduler. When it comes to smoothness (not considering battery drain), a tuned conservative delivers more as compared to a tuned ondemand.
18)Lionheartx
LionheartX is based on Lionheart but has a few changes on the tunables and features a suspend profile based on Smartass governor.
19)virtuous governor
It set your max cpu for wake and sleep and changes the governor when your device is awake or asleep. It saves battery by lowering cpu frequencys while the device sleeps, when it awakes it automatically speeds it up again. Or alternately you can set the cpu.It is based on smartassV2(It use 2 governors.one for sleep and other for awake)
Governor which is for performance and battery life-smartassV2(To get maximum performance, use ondemand or conservative)
2. I/O SCHEDULERS
Q. “What purposes does an i/o scheduler serve?”
A.
 Minimize hard disk seek latency.
 Prioritize I/O requests from processes.
 Allocate disk bandwidth for running processes.
 Guarantee that certain requests will be served before a deadline.
So in the simplest of simplest form: Kernel controls the disk access using I/O Scheduler.
Q. “What goals every I/O scheduler tries to balance?”
A.
 Fairness (let every process have its share of the access to disk)
 Performance (try to serve requests close to current disk head position first, because seeking there is fastest)
 Real-time (guarantee that a request is serviced in a given time)
Q. “Description, advantages, disadvantages of each I/O Scheduler?”
A.
1) Noop
Inserts all the incoming I/O requests to a First In First Out queue and implements request merging. Best used with storage devices that does not depend on mechanical movement to access data (yes, like our flash drives). Advantage here is that flash drives does not require reordering of multiple I/O requests unlike in normal hard drives.
Advantages:
 Serves I/O requests with least number of cpu cycles. (Battery friendly?)
 Best for flash drives since there is no seeking penalty.
 Good throughput on db systems.
Disadvantages:
 Reduction in number of cpu cycles used is proportional to drop in performance.
2) Deadline
Goal is to minimize I/O latency or starvation of a request. The same is achieved by round robin policy to be fair among multiple I/O requests. Five queues are aggressively used to reorder incoming requests.
Advantages:
 Nearly a real time scheduler.
 Excels in reducing latency of any given single I/O.
 Best scheduler for database access and queries.
 Bandwidth requirement of a process – what percentage of CPU it needs, is easily calculated.
 Like noop, a good scheduler for solid state/flash drives.
Disadvantages:
 When system is overloaded, set of processes that may miss deadline is largely unpredictable.
3) CFQ
Completely Fair Queuing scheduler maintains a scalable per-process I/O queue and attempts to distribute the available I/O bandwidth equally among all I/O requests. Each per-process queue contains synchronous requests from processes. Time slice allocated for each queue depends on the priority of the ‘parent’ process. V2 of CFQ has some fixes which solves process’ i/o starvation and some small backward seeks in the hope of improving responsiveness.
Advantages:
 Considered to deliver a balanced i/o performance.
 Easiest to tune.
 Excels on multiprocessor systems.
 Best database system performance after deadline.
Disadvantages:
 Some users report media scanning takes longest to complete using CFQ. This could be because of the property that since the bandwidth is equally distributed to all i/o operations during boot-up, media scanning is not given any special priority.
 Jitter (worst-case-delay) exhibited can sometimes be high, because of the number of tasks competing for the disk.
4) BFQ
Instead of time slices allocation by CFQ, BFQ assigns budgets. Disk is granted to an active process until it’s budget (number of sectors) expires. BFQ assigns high budgets to non-read tasks. Budget assigned to a process varies over time as a function of it’s behavior.
Advantages:
 Believed to be very good for usb data transfer rate.
 Believed to be the best scheduler for HD video recording and video streaming. (because of less jitter as compared to CFQ and others)
 Considered an accurate i/o scheduler.
 Achieves about 30% more throughput than CFQ on most workloads.
Disadvantages:
 Not the best scheduler for benchmarking.
 Higher budget assigned to a process can affect interactivity and increased latency.
5) SIO
Simple I/O scheduler aims to keep minimum overhead to achieve low latency to serve I/O requests. No priority quesues concepts, but only basic merging. Sio is a mix between noop & deadline. No reordering or sorting of requests.
Advantages:
 Simple, so reliable.
 Minimized starvation of requests.
Disadvantages:
 Slow random-read speeds on flash drives, compared to other schedulers.
 Sequential-read speeds on flash drives also not so good.
6) V(R)
Unlike other schedulers, synchronous and asynchronous requests are not treated separately, instead a deadline is imposed for fairness. The next request to be served is based on it’s distance from last request.
Advantages:
 May be best for benchmarking because at the peak of it’s ‘form’ VR performs best.
Disadvantages:
 Performance fluctuation results in below-average performance at times.
 Least reliable/most unstable.
Q. “Best I/O Scheduler?”
A.There is nothing called “best” i/o scheduler. Depending on your usage environment and tasks/apps been run, use different schedulers. That’s the best i can suggest.
However, considering the overall performance, battery, reliability and low latency, it is believed that
SIO > Noop > Deadline > VR > BFQ > CFQ, given all schedulers are tweaked and the storage used is a flash device.
At least give proper credits To "Original OP"
And btw Nice thread. It is a useful one
icoolguy1995 said:
At least give proper credits To "Original OP"
And btw Nice thread. It is a useful one
Click to expand...
Click to collapse
I agree with you Bro, but could'nt find proper credits, it was just a page on google mate
OP by @droidphile :
http://forum.xda-developers.com/showthread.php?t=1369817&styleid=16
Sent from my Micromax A110 using xda app-developers app
Thanks
Thanks for posting it here. But i guess it would mean a lot if it will all work in custom kernels. :victory:
The new custom kernels in original dev have issues.
click.here said:
Thanks for posting it here. But i guess it would mean a lot if it will all work in custom kernels. :victory:
The new custom kernels in original dev have issues.
Click to expand...
Click to collapse
Our Developers are working hard to get close to perfection.
As we all know intially all we had were huge amount of Custom Themed Roms (Ofcourse it takes good amount of time & hard work to create a Themed Rom too) but as time passed by there has been a great development & I am sure our dear Developers will keep working at their best to give us the best.
Patience Pays
Thanks to all the Developers :good::good::good:
@Amit_timA
Ask moderators to stick this thread.

Categories

Resources