[Q] Compiling CM7 kernel on Incredible - Android Software/Hacking General [Developers Only]

Alright guys. I'm trying to get a custom CM7 kernel running on my Incredible. As background, I am well versed in kernel compilation in general and on embedded devices. I followed the directions on the cyanogen wiki (Building_Kernel_from_source), but skipped the section about compiling CM7 itself, since I'm only interested in the kernel. I pulled the kernel from CM's git repo, and it was checked out to the latest version (2.6.37), which is also what my phone was running. I grabbed the 'prebuilt' ARM cross compiling toolchain. I used the kernel config from my phone (/proc/config.gz). Looking through the options with menuconfig, it seemed that the options were correct. I pulled the boot.img from the latest CM7 install zip, (7.0.3), split out the ramdisk.img with split_bootimg.pl, merged my compiled zImage with the ramdisk.img using mkbootimg, copied the resulting img file to my sdcard, ran adb shell from recovery, zero'd out mtd2 (boot), and flashed my custom boot.img using flash_image.
Whew!
I have tried countless times, and every time I try to boot my device with the new kernel, my phone doesn't get past the "htc Incredible" boot screen. It just hangs there. I am completely at a loss as to where to go from here. Any suggestions would be EXTREMELY appreciated.
Thanks for reading.

I just remembered, I ended up using a different tool to split the ramdisk, since the wiki link to split_bootimg.pl was broken. I just now found split_bootimg.pl using google, extracted the custom boot.img I've been trying to throw at my phone, and the kernel section of it was recognized by 'file' utility as data. I'm going to try doing the ramdisk split using split_bootimg.pl tomorrow and see what the resulting boot.img looks like then. I'll report back my results.

Turns out that when you split the boot.img that comes with cyanogen, the kernel in there is also recognized as data. I am no closer to solving this mystery

Related

[CyanogenMod][Custom kernel] stuck on splashscreen

I am very new to the android parralel scene (and the android and smartphones in general) so please excuse me if I have missed obvious things.
I am trying to do a custom android kernel on a CyanogenMod stable in order to activate SCTP support on a HTC Magic (sapphire) PVT 32B (google branded).
I have followed the this tutorial : wiki.cyanogenmod.com/index.php/Building_from_source to make the kernel (2.6.29-cm42) and this tutorial wiki.cyanogenmod.com/index.php/How_to_build_a_kernel_port for the packing.
My base is update-cm-4.2.14.1-signed.zip
I have tried with my new package as a module (and also redone modules.sqf) and also in-kernel.
I have tried the full update, and I've also tried to patch the kernel on a clean Cyanogen install.
Everytime I get stuck on the spash screen (google io09 developer conference).
Thanks for having read that post!
NB: Before the manipulation I had made a nandroid backup so I can get back without problem.
I use cm-recovery-1.4.img as recovery image with fastboot, and I noticed that I can't use adb to push data on the sdcard and then install it with the recovery. In fact the commands seem to work, but behind the scene it is the old sdcard.zip that is installed. I have to use my backup, fullboot, put my test update on the sdcard, rebootfastmode recover and then install.
Ah also, I would be really happy if you could tell me how to diagnostise errors on the bootphase. I'm currently totally helpless (and that's why I am posting here ^^).
I am now trying to build a new complete cyanogenmod from source with my custom kernel and modules. I don't think it will resolve my problem but I hope it will help me in understanding the problem.
While waiting for my repo sync (that won't end before tomorrow :/) I have made a new attempt at a CyanogenMod mod.
So i recompiled my kernel
Regenerated the modules
generated the modules.dep
Remade modules.sqf using update-cm-4.2.14.1-signed.zip as a base
Inserted wlan.ko and my new boot.img (made with unpack repack) into update-cm-4.2.14.1-signed.zip
Signed with the testkeys from the tutorial
Fastboot
update
Stuck...
I zipped some file if it could be of any help
my .config, zImage, boot.img, wlan.ko and modules.sqf
Thanks for reading
After some irc chat session I discovered it would be possible that my problem come from a bad boot.img generation.
I use old unpack / repack scripts (with whose you can't use the --base parameter).
I will try to fix this now, and retest!

How to compile and boot custom kernel on linux

Hey, so I'm in a mood to compile and test kernel sources provided by Kali-. However I've used search and googled and seriously didn't find anything that would explain the whole process from downloading crosscompiler to putting it all in phone.
So is there any good tutorial for creating and booting custom kernel?
It shouldn't be important, but I'm on Ubuntu Lucid - debian lenny on other PC no windows available atm.
Any help would be appreciated.
cyanogen's wiki has some info on compiling his kernel. i'd look there first
Yeah I did, but it's different and a bit outdated. My compilation end without error ($? == 0) but still no zImage.
edit: Few make's later zImage magically appeared! I've extracted current kernel and ramdisk. The question is now - how to flash it back ? Not sure if simple cat file.img > /dev/mtd/mtd2 will work.
edit2: Compiled native desire kernel using extracted .config, created image and flashed but still no go - It's my first android so I don't know how to even debug this. I believe i got kernel panic somewhere but still don't know how to fix it - any help? This is a dev forum right?
maybe check #htc-linux on freenode irc. they might be able to help you out in compiling the kernel in general, maybe not so much in desire-specific.

[Q] Porting AOSP (Froyo) to G Tablet

Hello,
First of all, I am not attempting to compete with the other awesome images for the G Tablet available. I am doing this process to learn, and maybe contribute to the community.
I have grabbed the AOSP directly from Google's repo tree, and compiled it in two different ways: Generic build, modifying BoardConfig.mk and other files as necessary. I have also used the Device/Vendor files from the Cyanogen Beta 4 harmony repo tree, and compiled a harmony target with AOSP.
When I compiled the generic build (or the the targeted build), I made sure all proprietary files from the tablet had been extracted and replaced in my system.img. (I got this list from the extract-files.sh script in Cyanogen harmony repo).
I have found that using the stock boot.img from the original nvflash files will boot nearly any system.img (from my update.zip in clockwork). I used this original boot.img, combined with my system.img from the AOSP build (with the proprietary files in place), and made an updater-script which installed things. I found that the system.img was properly extracted to /system.
The problem that occurs -- when booting, the Viewsonic bootup screen will load the GTablet screen, but it will eventually loop back to the Viewsonic screen and report "deleting msc" prior to returning to Recovery Mode on it's own.
I have enabled ADB persistence in the boot ramdisk, and it works fine as long as it's not my system.img. When I use the AOSP system.img, adb devices shows the device, but adb shell/logcat fail until the device power cycles.
Does anyone know what I might be missing?
Also want to add:
I have tried the stock boot.img, which lacks a 'cmdline' parameter, and I have tried using the cmdline parameters from the Cyan Harmony boot.img specifications. I am not sure if this might have something to do with the issue or not.
kornyone said:
Hello,
First of all, I am not attempting to compete with the other awesome images for the G Tablet available. I am doing this process to learn, and maybe contribute to the community.
I have grabbed the AOSP directly from Google's repo tree, and compiled it in two different ways: Generic build, modifying BoardConfig.mk and other files as necessary. I have also used the Device/Vendor files from the Cyanogen Beta 4 harmony repo tree, and compiled a harmony target with AOSP.
When I compiled the generic build (or the the targeted build), I made sure all proprietary files from the tablet had been extracted and replaced in my system.img. (I got this list from the extract-files.sh script in Cyanogen harmony repo).
I have found that using the stock boot.img from the original nvflash files will boot nearly any system.img (from my update.zip in clockwork). I used this original boot.img, combined with my system.img from the AOSP build (with the proprietary files in place), and made an updater-script which installed things. I found that the system.img was properly extracted to /system.
The problem that occurs -- when booting, the Viewsonic bootup screen will load the GTablet screen, but it will eventually loop back to the Viewsonic screen and report "deleting msc" prior to returning to Recovery Mode on it's own.
I have enabled ADB persistence in the boot ramdisk, and it works fine as long as it's not my system.img. When I use the AOSP system.img, adb devices shows the device, but adb shell/logcat fail until the device power cycles.
Does anyone know what I might be missing?
Click to expand...
Click to collapse
Did you ever get your AOSP build to boot?
tjohnsonjr said:
Did you ever get your AOSP build to boot?
Click to expand...
Click to collapse
I did. It's in the Dev section now

[Q] GT-I9000M kernel compiling

I've got this side project going where I've decided to try to modify the stock kernel for my GT-I9000M.
I'm a Gentoo linux user and have cross-compiled kernels for embedded systems with or without initramfs and modules successfully many times. Rather than just grab and flash the latest mod from the net I want to understand exactly how to create my own.
I already have access via a chroot to a working Gentoo install, however that runs in a sandbox inside android userland, which can be irritating to say the least. I'm already able to create binaries for armv7a on the phone itself, which is a time and power-consuming novelty.
I setup a development environment on my main computer and made sure I could create working binaries for the armv7a.
I backed up all the bml partitions on my phone.
Next, I made sure I could access Download Mode and experimented with Heimdall until I was satisfied I was able to recover from any bad kernel flashes.
I altered the first boot logo in param.lfs with dd, but that's a whole other story.
Next, I downloaded Samsung's source for Froyo and followed the instructions to create a zImage.
aries_eur_defconfig selects the FM radio module and the Samsung TV out driver which are broken. No problem, I figured I could check that out later so I disabled those options for now. it compiles! great! But it didn't boot. I turned to the internet for ways to solve the problem.
There was a lot of conflicting information. I ended up trying a lot of different approaches, modules, firmware, version info, kernel command lines, fbcon... well I messed around.
Some time later, I find myself happily booting with my own kernel. The bootloader displayed my custom logo in param.lfs, but fbcon didn't work and I got a stock samsung gt-i9000 logo before android booted up! The phone worked, wifi worked, bluetooth worked, it was awesome (for 2.6.32.9 that is )!
So, great! Except I got overconfident and cocky. I made a slew of changes trying to get fbcon to work and to top off the evening I overwrote my working zImage with a broken kernel (without a backup of my working custom zImage or .config). I still have backups otherwise of course and haven't lost the functionality of my phone in any way, but now I'm just irritated.
Anybody else working on compiling from source on the GT-I9000M?
I pressed ahead and tried to recreate the conditions that got me a working kernel and as of yet I've been unsuccessful Luckily I've got a kmsg from the kernel when it booted. I can see the kernel command line on the custom kernel that booted was simply "console=ttySAC2,115200" although I do recall trying different values for init= ... The default init in the sources is /linuxrc which doesn't exist in initramfs.
There are also settings for the kernel command line and version information in arch/arm/mach-s5pv210/include/mach/param.h
Is there a known good method to compile from Samsung's sources?
I unpacked a known good zImage, played with it's initramfs, repacked it and it boots just fine.
I've tried again with a fresh copy of the gt-i9000 froyo-samsung branch:
- unpack initramfs from a known good 2.6.32.9 kernel
- make clean
- make aries_eur_defconfig
- make menuconfig, add initramfs, remove Samsung TV driver and FM radio module
- make
the resulting vmlinux is: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, not stripped (I know, it's zImage not vmlinux but I'm just doing sanity checks)
I have a custom logo in param.lfs which always displays on boot. A second logo is compiled into the kernel, and I do see a change in the logo when my kernel boots (it shows GT-I9000 instead of GT-I9000M after the first logo). This leads me to believe that the kernel is booting... but the phone powers off after booting.
I've tried the recommended changes to default.prop to use adb to obtain the kmsg of the new kernel. This has not worked however, which could mean that the kernel doesn't get as far as initramfs.
the kernel command line from the kmsg I have from the one time that a custom kernel of mine booted is simply: "console=ttySAC2,115200 loglevel=4" . There's no mention of init, which I think should be init=/init although aries_eur_defconfig seems to think that init=/linuxrc is appropriate (linuxrc doesn't exist?) Regardless, it doesn't seem to matter what I specify for init.
Which leaves proprietary Samsung kernel modules. If they can't load, this could explain everything I'm experiencing. It isn't clear what specific version the proprietary modules are expecting.
Maybe this will help somebody else. I've got it working now.
Attached is my working config.

[HowTo] Compile the Kernel Source Code for the HTC One XL

Hi guys!
Someone requested a tutorial on how to build the kernel source code, so I thought I might as well do it I'll give you a bit more information too.
Maybe this will kick start kernel development a little bit too. Who knows.
Anyway:
1. Set up your build environment as per this guide by AOSP here: http://source.android.com/source/initializing.html
This guide will be primarily aimed at Ubuntu, but it should be easy enough to do on other Linux PCs. Ubuntu is highly recommended. And don't ask about Windows.
2. Download the toolchains: http://code.google.com/p/rohan-kernel-evita/downloads/detail?name=toolchains.tar.gz&can=2
I've hosted both GCC 4.4 and GCC 4.6 (prebuilt) on my Google Code page. These are for Linux.
Download the toolchain package here: http://code.google.com/p/rohan-kernel-evita/downloads/detail?name=toolchains.tar.gz&can=2
Then un-tar the archive and extract it to your home folder so that the path to the toolchain directories are ~/toolchain/whatever-one-you-want
3. At this point you can decide which kernel source you want to download. There are really two sources.
The first choice is getting it from HTC Dev directly. This is good if you want to build your kernel for a Sense 4 ICS ROM. If you want to build for AOSP/JB, then scroll down below all the following HTC stuff.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
To use HTC's source:
Go to HTCdev.com and make an account. Then download the source code for our device (I'd recommend the "One X" source under carrier "AT&T" version "2.20". Let the zip file download and extract it to your home folder (so the path is /home/user/evita-ics..../
To build HTC's source, run these commands:
Code:
cd ~/evita-ics-whatever_the_directory_is_named
export ARCH=arm
make elite_defconfig
Second command is saying what type of architecture we want (we are compiling for ARM processors, so we want ARM)
Third command is saying to make the default config for our device (whose hardware is codenamed "elite")
Then to build the actual kernel:
Code:
make -j# ARCH=arm CROSS_COMPILE=~/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
In the command above, there is "-j#". Replace the "#" with the number of CPUs you have.
Ask me about it if you need help. That should be it! Let the build go and in a few minutes you should have a zImage file located at ~/evita-ics-..../arch/arm/boot. That is the actual kernel.
To test out the zImage (kernel), connect your device via fastboot mode and type:
Code:
fastboot boot /path/to/zImage
Combined with the ramdisk, thats what makes the boot.img file. Eventually if you want to distribute your kernel, you should use an installer that injects the zImage into the boot.img or combine the zImage with a ramdisk to make a boot.img. I can do a tutorial on that later on as well.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
To get the "other" source:
This source is based off of HTC's source and includes other devices as well in it (the One S and Evo 4G LTE). Its good if you want to build JB AOSP kernels.
To download this kernel source do this:
Code:
mkdir ~/kernel
cd ~/kernel
git clone https://github.com/CyanogenMod/android_kernel_htc_msm8960.git -b android-msm-evita-3.0
This version also includes a number of optimizations and odd bug fixes present in the HTC version.
To build this second source, run these commands:
Code:
cd ~/kernel/android_kernel_htc_msm8960
export ARCH=arm
make elite_defconfig
Second command is saying what type of architecture we want (we are compiling for ARM processors, so we want ARM)
Third command is saying to make the default config for our device (whose hardware is codenamed "elite")
Then to build the actual kernel:
Code:
make -j# ARCH=arm CROSS_COMPILE=~/toolchain/arm-linux-androideabi-4.6/bin/arm-eabi-
In the command above, there is "-j#". Replace the "#" with the number of CPUs you have.
Ask me about it if you need help. That should be it! Let the build go and in a few minutes you should have a zImage file located at ~/evita-ics-..../arch/arm/boot. That is the actual kernel.
To test out the zImage (kernel), connect your device via fastboot mode and type:
Code:
fastboot boot /path/to/zImage
Combined with the ramdisk, thats what makes the boot.img file. Eventually if you want to distribute your kernel, you should use an installer that injects the zImage into the boot.img or combine the zImage with a ramdisk to make a boot.img. I can do a tutorial on that later on as well.
-----------------------------------------------------------------------------
The second option is also a bit better as it uses the 4.6 toolchain instead of GCC 4.4. HTC's source doesn't work with GCC 4.6 so it can't be used without changes that the second source has.
If you have any questions, feel free to post here, message me on twitter (@rohanXm), chat me on IRC (#HTC-One-XL) or PM me!
If this helped you, please consider hitting the donation link under my username on the left. Donations are never required but always appreciated.
Instead of downloading cm10 the readme inclided with the HTC source has directions for getting a tool chain which will compile the source.
Sent from my HTC One X using Tapatalk 2
Perfect. Now I just have to read.
Sent from my HTC One XL bumping it
rohan32 said:
Code:
repo init -u git://github.com/CyanogenMod/android.git -b jb
Click to expand...
Click to collapse
FYI, It looks like the branch name has changed. When I changed "jb" to "jellybean" the repo init command worked.
Rohan. You are one bad MF'er
Sent from my twin turbo'ed OneXL rocking rezound beats
rohan32 said:
2. You can either try to find a standalone package of the precompiled toolchain, or you are going to need to download a ROMs source. I'd recommend downloading a ROMs source since I've never found a good toolchain that worked for me. If you find one that works, post below
For now we will download CM10 since that seems like the defacto standard.
Click to expand...
Click to collapse
I downloaded the 2.20.502.7 kernel source and when I extracted it there was a file named evita_readme.txt which gave another, possibly more "official", location for downloading a toolchain:
--Please follow below command to download the official android toolchain: (arm-eabi-4.4.3)
git clone https://android.googlesource.com/platform/prebuilt
Click to expand...
Click to collapse
I just performed a build with this toolchain but got this error when I attempted to load zImage via fastboot:
c:\>fastboot flash boot zImage
sending 'boot' (5140 KB)...
OKAY [ 1.044s]
writing 'boot'...
FAILED (remote: image error! (BootMagic check fail))
finished. total time: 1.077s
Click to expand...
Click to collapse
I'm not sure if this is caused by the toolchain or if I screwed something up. Have you ever seen this error before?
EDIT: Ok I see what I did incorrectly. The zImage needs to be "Combined with the ramdisk". You wouldn't know how to perform this operation... would you?
denversc said:
I downloaded the 2.20.502.7 kernel source and when I extracted it there was a file named evita_readme.txt which gave another, possibly more "official", location for downloading a toolchain:
I just performed a build with this toolchain but got this error when I attempted to load zImage via fastboot:
I'm not sure if this is caused by the toolchain or if I screwed something up. Have you ever seen this error before?
EDIT: Ok I see what I did incorrectly. The zImage needs to be "Combined with the ramdisk". You wouldn't know how to perform this operation... would you?
Click to expand...
Click to collapse
You are trying to flash a zImage
To my knowledge, only booting zImages work on this device. For the time being just boot the zImage (use fastboot boot zImage)
I will make a tutorial on how to combine the zImage created with a ramdisk to make a boot.img when I get the chance
denversc said:
FYI, It looks like the branch name has changed. When I changed "jb" to "jellybean" the repo init command worked.
Click to expand...
Click to collapse
Oops, my bad! That was a mistake. AOKP uses -jb and CM uses -jellybean so I got them switched fixed now
Out of any device I've seen more people actually interested in helping and learning to help then any other community. I've watched noobs become less noobish.. I've watched skizz learn how to make themes. Hell I've learned 10 fold what I knew before this phone myself.
That is beautiful, and now such an informed, helpful post such as this.
Have great Sunday you guys! I think I might give this a shot!
Sent from my One X
I'll streamline this process in a bit, so that you don't need to download CM10
Edit: cleaned up post, now I'm uploading just the toolchains. Its a tar.gz archive, around 150mb. Much better than downloading the entire CM10 source
rohan32 said:
You are trying to flash a zImage. To my knowledge, only booting zImages work on this device. For the time being just boot the zImage (use fastboot boot zImage)
Click to expand...
Click to collapse
Thanks for your response, rohan. You are absolutely right: I was incorrectly attempting to flash zImage straight to the boot partition, and the error produced by flashboot was justified. I have since successfully "tested out" my compiled zImage by flashing it via "fastboot boot zImage" and it worked like a charm! I ported the modifications from sbryan's Blackout BeastMode kernel and I am now able to OC to 2106 MHz and UC to 192 MHz. It's been running solid for the past few hours at least
Of course, the kernel reverts back to the one stored in the boot partition after a reboot, and I want my shiny new kernel to "stick". I've done a bit of research on this topic and found some information about combining my zImage with a ramdisk into a "real" boot.img but have not yet been successful in creating a boot.img which does not bootloop after flashing it.
For example, I found an article on xda called Basic Kernel Kitchen for Minor Kernel Tweaking which points to a "kitchen sink" tool for creating a boot.img from a zImage and a ramdisk. My problem is that I don't know where to get or how to make a ramdisk. So I tried using the ramdisk from the boot.img of the ROM that I am currently running (CleanROM 4.5 DE) but just got into a bootloop. I've since been doing some yard work today so haven't gotten back to investigating further.
I also found another program named abootimg which can also produce a boot.img from a zImage abd a ramdisk, but when I tried it an error message about my zImage being "too big" was produced.
If it's not obvious yet, I am kind of fumbling around in the dark as compiling and deploying custom kernels is completely new to me! But this post was the most valuable resource I've come across in getting to this point. Thanks so much for writing it! I eagerly await your next article about creating the boot.img
---------- Post added at 06:05 PM ---------- Previous post was at 05:50 PM ----------
rohan32 said:
cleaned up post
Click to expand...
Click to collapse
Thanks for cleaning up the post rohan. I have a few follow-up questions/comments:
missing toolchains link -- the post says "Download the toolchains:" but there is no link to download anything... did you forget to paste the link?
official toolchain -- That's great that you uploaded the toolschains to save tonnes of bandwidth. The CM10 source was taking a VERY long time for me to grab. However, I imagine some people (like me) would prefer to get the toolchain from an "official" source. In the "evita_readme.txt" file of the kernel sources downloaded from HTC dev it instructs one to use the official sources from "git clone https://android.googlesource.com/platform/prebuilt". This is the toolchain that I used and it successfully built the zImage.
ko files -- I noticed in the ZIP file for Blackout BeastMode, in additional to installing the zImage it also puts a bunch of "ko" (kernel modules I believe) into the /system partition (eg. qce40.ko). Should I also be deploying .ko files from my build to the device?
Thanks!
denversc said:
Thanks for your response, rohan. You are absolutely right: I was incorrectly attempting to flash zImage straight to the boot partition, and the error produced by flashboot was justified. I have since successfully "tested out" my compiled zImage by flashing it via "fastboot boot zImage" and it worked like a charm! I ported the modifications from sbryan's Blackout BeastMode kernel and I am now able to OC to 2106 MHz and UC to 192 MHz. It's been running solid for the past few hours at least
Of course, the kernel reverts back to the one stored in the boot partition after a reboot, and I want my shiny new kernel to "stick". I've done a bit of research on this topic and found some information about combining my zImage with a ramdisk into a "real" boot.img but have not yet been successful in creating a boot.img which does not bootloop after flashing it.
For example, I found an article on xda called Basic Kernel Kitchen for Minor Kernel Tweaking which points to a "kitchen sink" tool for creating a boot.img from a zImage and a ramdisk. My problem is that I don't know where to get or how to make a ramdisk. So I tried using the ramdisk from the boot.img of the ROM that I am currently running (CleanROM 4.5 DE) but just got into a bootloop. I've since been doing some yard work today so haven't gotten back to investigating further.
I also found another program named abootimg which can also produce a boot.img from a zImage abd a ramdisk, but when I tried it an error message about my zImage being "too big" was produced.
If it's not obvious yet, I am kind of fumbling around in the dark as compiling and deploying custom kernels is completely new to me! But this post was the most valuable resource I've come across in getting to this point. Thanks so much for writing it! I eagerly await your next article about creating the boot.img
---------- Post added at 06:05 PM ---------- Previous post was at 05:50 PM ----------
Thanks for cleaning up the post rohan. I have a few follow-up questions/comments:
missing toolchains link -- the post says "Download the toolchains:" but there is no link to download anything... did you forget to paste the link?
official toolchain -- That's great that you uploaded the toolschains to save tonnes of bandwidth. The CM10 source was taking a VERY long time for me to grab. However, I imagine some people (like me) would prefer to get the toolchain from an "official" source. In the "evita_readme.txt" file of the kernel sources downloaded from HTC dev it instructs one to use the official sources from "git clone https://android.googlesource.com/platform/prebuilt". This is the toolchain that I used and it successfully built the zImage.
ko files -- I noticed in the ZIP file for Blackout BeastMode, in additional to installing the zImage it also puts a bunch of "ko" (kernel modules I believe) into the /system partition (eg. qce40.ko). Should I also be deploying .ko files from my build to the device?
Thanks!
Click to expand...
Click to collapse
Hey!
Sorry, set it to upload then got distracted Link posted
The reason why your boot.imgs bootloop is because there is a special ramdisk address that needs to be set when combining the ramdisk with the zImage, and most kitchens don't support this. You also need to set the address after setting the base value.
I will post a guide on how to make it a real boot.img whenever I get the chance.
I'm telling you people, Rohan is a BOSS. Most helpful dev I know.
Sent from my HTC One XL using xda app-developers app
rohan32 said:
Hey!
Sorry, set it to upload then got distracted Link posted
The reason why your boot.imgs bootloop is because there is a special ramdisk address that needs to be set when combining the ramdisk with the zImage, and most kitchens don't support this. You also need to set the address after setting the base value.
I will post a guide on how to make it a real boot.img whenever I get the chance.
Click to expand...
Click to collapse
I have the zImage thanks to your tutorial, but I want to know how to create the kernel zip, whenever you have time will be amazing if you can post a guide, I'm really looking forward to that guide, because i haven't been able to locate a guide that works
Sent from my HTC One XL using xda premium
rohan32 said:
Hi guys!
Second command is saying what type of architecture we want (we are compiling for ARM processors, so we want ARM)
Third command is saying to make the default config for our device (whose hardware is codenamed "elite")
Then to build the actual kernel:
Code:
make -j# ARCH=arm CROSS_COMPILE=~/toolchain/arm-linux-androideabi-4.6/bin/arm-eabi-
Click to expand...
Click to collapse
This is the correct make for "other source" kernel.
Code:
make -j# ARCH=arm CROSS_COMPILE=~/toolchain/arm-linux-androideabi-4.6/bin/[COLOR="Red"]arm-linux-androideabi-[/COLOR]
Can you make a tutorial on how to insert governors into a kernel?
Compiling problem
Hey man,
Please help me I followed your article but when I try copile with:
make -j2 ARCH=arm CROSS_COMPILE=~/toolchain/arm-eabi-4.4.3/bin/arm-eabi
I got something like this:
/home/martin/toolchain/arm-eabi-4.4.3/bin/../lib/gcc/arm-eabi/4.4.3/../../../../arm-eabi/bin/as: error while loading shared libraries: libz.so.1: cannot open shared object file: No such file or directory
Thanks
UPDATE:
now its work
I went deeper and install lib32z1 with "sudo apt-get install lib32z1"... now its work
My device repositories are not available on github, But I got device tree and vendor blobs by making changes in similar device repo. That reference device's kernel's lineageos_defconfig is situated in htc msm8974 kernel repo. So how can I get lineageos_defconfig for my device, and which other my device related kernel files(.dtsi or any other) I have to push in htc msm8974 repo and get those files to make things ready for build?
Please help......

Categories

Resources