Android Native Development Kit RELEASED - G1 Android Development

Check it out here:
http://android-developers.blogspot.com/2009/06/introducing-android-15-ndk-release-1.html

Yes, I heard they were making this actually happen...
As for building Apps in C/C++ Native..
Pros:
-More Stable
-More Unique (no Android UI features unless integrated)
-More Sophisticated
-Will open to a more known (learned) framework, by this I mean if you know C/C++ and already have apps built for other mobile devices it should be much easier to port it over to Android (look out for the flood Android Market)
-Other open sourced / commercial apps will be more easily ported...some ideas?...START A THREAD!!!...but just for the record...Apache...FireFox...just about anything that has an open source that relies on C programming...crap you can even extend this by adding Ruby, Perl...etc.
-Remember, this is a Development Kit...it just adds tools to the 1.5 SDK that allow you to create C based applications and build them in the android environment. All your apps should still work going back to RC-30 or even further back...depends on the kernel support I would guess.
Cons:
Much Larger Apps (file size)
Need to learn how the Linux Kernel works (for developers)
Other:
Load times? Ok, so for example if you have one app...say...TuneWiki...just an example of a popular resource hog...if it were to be redeveloped under C++ and optimized for the Android Modified Linux Kernel...your resources could easily be cut in half since you are not relying on the Dalvik VM.
SO...outcome?
Better for all, as long as you know what you are doing.
We should also see a huge upswing in crapware on the market from student programmers doing C++ projects on an easy open-sourced mobile platform (that has a public SDK).
So you'll see a lot of "Hello World" type apps that will have next to no function...have fun with those...................
From the Official NDK User Forum: Link

acidnine
Very nice post. Thanks for the insight.

acidnine said:
Pros:
-More Stable
Click to expand...
Click to collapse
The opposite actually. Poorly written interpreted code breaks elegantly in a vm. Poorly written compiled code can take a whole system down.
-More Unique (no Android UI features unless integrated)
Click to expand...
Click to collapse
You can't integrate any Android frameworks (UIs, etc) period.
-More Sophisticated
Click to expand...
Click to collapse
I've seen some very sophisticated Java and some **** C/C++. Don't assume that higher level programming languages are necessarily less sophisticated than lower level ones.
-Will open to a more known (learned) framework, by this I mean if you know C/C++ and already have apps built for other mobile devices it should be much easier to port it over to Android (look out for the flood Android Market)
Click to expand...
Click to collapse
The NDK will enable some applications that couldn't previously have been done in the Dalvik vm for performance issues, but it isn't going to be a "flood". Fact of the matter is a lot of developers who have needed native performance or didn't want to rewrite a C/C++ codebase have deployed native code already.
but just for the record...Apache...FireFox...just about anything that has an open source that relies on C programming...crap you can even extend this by adding Ruby, Perl...etc.
Click to expand...
Click to collapse
FF is written in C++... [edit: I should also point out that the NDK provides for native code support in the form of libraries (mainly as a helper for computation-intensive functions). Nothing in the way of window managers or other UI is addressed, meaning for the majority of "visible" C/C++ apps the developer would have to rewrite a significant portion in Java still.]
Cons:
Much Larger Apps (file size)
Need to learn how the Linux Kernel works (for developers)
Click to expand...
Click to collapse
I don't know what to say other than these two statements are generally incorrect. There are two main cons to using NDK as opposed to the standard SDK, and they are 1) Reduced (or no) compatibility on future Android devices 2) Significantly reduced ease of debugging.

very interesting...subscribed

jashsu said:
You can't integrate any Android frameworks (UIs, etc) period.
Click to expand...
Click to collapse
Not true. This isn't full native code apps, this is the ability to call native libraries in a davlik app.
From the actual NDK page ...
The NDK provides:
A set of tools and build files used to generate native code libraries from C and C++ sources
A way to embed the corresponding native libraries into application package files (.apks) that can be deployed on Android devices
A set of native system headers and libraries that will be supported in all future versions of the Android platform, starting from Android 1.5
Documentation, samples, and tutorials
Please note that the NDK does not enable you to develop native-only applications. Android's primary runtime remains the Dalvik virtual machine.
Click to expand...
Click to collapse

.milFox said:
Not true. This isn't full native code apps, this is the ability to call native libraries in a davlik app.
From the actual NDK page ...
Click to expand...
Click to collapse
Correct. As I pointed out above, the NDK actually is just a framework for building native libraries that standard dalvik apps then call. However, my point was that the libraries themselves (the products of the NDK) cannot access or invoke the Android framework. There is a pointed distinction.

At least this could mean the beginning of some video codec porting to the G1's hardware. Be nice to be able to actually make use of my video collection without having to reencode everything.

neonrush said:
At least this could mean the beginning of some video codec porting to the G1's hardware. Be nice to be able to actually make use of my video collection without having to reencode everything.
Click to expand...
Click to collapse
That is probably what the NDK is perfect for. It's CPU intensive stuff, already written in platform independent C/C++ that can then be called from within a nice Androidy UI.

So they basically added JNI to the SDK...

http://en.wikipedia.org/wiki/Java_Native_Interface

Related

Forthcoming Native Development Kit

A week ago Brian Swetland (of the Android team) posted to the g1-hackers mailing list this juicy little nugget:
It is possible to bundle native shared libs in apks, and specific details
about how to do this in a least-likely-to-break-later way will be documented
in the forthcoming Native Development Kit (NDK).
Work is on-going to improve the platform APIs and provide more and better
access to the OS and hardware (bluetooth, improved audio, etc, etc). Future
updates will increase the surface area of the APIs.
Click to expand...
Click to collapse
Trying to get some confirmation and additional details, I checked in with android-framework and received this reply from Dave Sparks:
Yes, we're planning a native SDK. There is no official release date
yet. The initial release will probably be very limited in scope, just
enough to add some JNI helpers. As we lock down native API's, more
functionality will be added.
Click to expand...
Click to collapse
"JNI helpers" sounds a bit underwhelming, like .so libraries for optimizing inner-loops. However, this looks like a good first step toward getting applications with performance-bound modules to shine on Android. Personally I'm crossing my fingers for this to be what the Mozilla Fennec team to invest the time in porting for Android.
I'd rather see C#/.NET bindings for Android. Java blows. When I have time, I'm going to look into cross compiling mono for ARM (it's been done for ARM PCs, but not for Android yet).
Koush said:
I'd rather see C#/.NET bindings for Android. Java blows. When I have time, I'm going to look into cross compiling mono for ARM (it's been done for ARM PCs, but not for Android yet).
Click to expand...
Click to collapse
At first I thought you meant to cross-compile C# to Java bytecode to run in Dalvik. Didn't seem to make much sense since you wouldn't benefit from the .NET framework itself at all.
As for getting Mono natively on ARM, would that work for a non-root G1? If not it would be of little help for developing applications for the general non-rooted public.

Android NDK r3 and OpenGL ES 2.0!

Android Games WILL be improved thanks to NDK r3 and OpenGL ES 2.0
Developers on the Android platform have already been pushing the boundaries of Android gaming. Even Quake 3 has been seen running on the Android platform. Things can only get better with today’s announcement.
The Android Developers Blog today announced the availability of the NDK r3 that will let android developers directly access OpenGL ES 2.0 features.
Applications targeting Android 2.0 (API level 5) or higher can now directly access OpenGL ES 2.0 features. This brings the ability to control graphics rendering through vertex and fragment shader programs, using the GLSL shading language.
A new trivial sample, named “hello-gl2″, demonstrates how to render a simple triangle using both shader types.
With access to these enhanced OpenGL ES features game graphics should be greatly improved and we should start to see an awesome future for Android gaming. Obviously, we still need developers to take advantage of the new API and have the hardware powerful enough to use it, but everything is getting real close to serious gaming on Android.
Source: Android Developers Blog
Source: AndroidSPIN
-----
What is the Android NDK?
The Android NDK is a toolset that lets you embed components that make use of native code in your Android applications.
Android applications run in the Dalvik virtual machine. The NDK allows you to implement parts of your applications using native-code languages such as C and C++. This can provide benefits to certain classes of applications, in the form of reuse of existing code and in some cases increased speed.
The NDK provides:
* A set of tools and build files used to generate native code libraries from C and C++ sources
* A way to embed the corresponding native libraries into application package files (.apks) that can be deployed on Android devices
* A set of native system headers and libraries that will be supported in all future versions of the Android platform, starting from Android 1.5
* Documentation, samples, and tutorials
This release of the NDK supports the ARMv5TE machine instruction set and provides stable headers for libc (the C library), libm (the Math library), OpenGL ES (3D graphics library), the JNI interface, and other libraries, as listed in the section below.
The NDK will not benefit most applications. As a developer, you will need to balance its benefits against its drawbacks; notably, using native code does not result in an automatic performance increase, but does always increase application complexity. Typical good candidates for the NDK are self-contained, CPU-intensive operations that don't allocate much memory, such as signal processing, physics simulation, and so on. Simply re-coding a method to run in C usually does not result in a large performance increase. The NDK can, however, can be an effective way to reuse a large corpus of existing C/C++ code.
Please note that the NDK does not enable you to develop native-only applications. Android's primary runtime remains the Dalvik virtual machine.
Contents of the NDK
Development tools
The NDK includes a set of cross-toolchains (compilers, linkers, etc..) that can generate native ARM binaries on Linux, OS X, and Windows (with Cygwin) platforms.
It provides a set of system headers for stable native APIs that are guaranteed to be supported in all later releases of the platform:
* libc (C library) headers
* libm (math library) headers
* JNI interface headers
* libz (Zlib compression) headers
* liblog (Android logging) header
* OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers
* A Minimal set of headers for C++ support
The NDK also provides a build system that lets you work efficiently with your sources, without having to handle the toolchain/platform/CPU/ABI details. You create very short build files to describe which sources to compile and which Android application will use them — the build system compiles the sources and places the shared libraries directly in your application project.
Important: With the exception of the libraries listed above, native system libraries in the Android platform are not stable and may change in future platform versions. Your applications should only make use of the stable native system libraries provided in this NDK.
Documentation
The NDK package includes a set of documentation that describes the capabilities of the NDK and how to use it to create shared libraries for your Android applications. In this release, the documentation is provided only in the downloadable NDK package. You can find the documentation in the <ndk>/docs/ directory. Included are these files:
* INSTALL.TXT — describes how to install the NDK and configure it for your host system
* OVERVIEW.TXT — provides an overview of the NDK capabilities and usage
* ANDROID-MK.TXT — describes the use of the Android.mk file, which defines the native sources you want to compile
* APPLICATION-MK.TXT — describes the use of the Application.mk file, which describes the native sources required by your Android application
* HOWTO.TXT — information about common tasks associated with NDK development.
* SYSTEM-ISSUES.TXT — known issues in the Android system images that you should be aware of, if you are developing using the NDK.
* STABLE-APIS.TXT — a complete list of the stable APIs exposed by headers in the NDK.
* CPU-ARCH-ABIS.TXT — a description of supported CPU architectures and how to target them.
* CHANGES.TXT — a complete list of changes to the NDK across all releases.
Additionally, the package includes detailed information about the "bionic" C library provided with the Android platform that you should be aware of, if you are developing using the NDK. You can find the documentation in the <ndk>/docs/system/libc/ directory:
* OVERVIEW.TXT — provides an overview of the "bionic" C library and the features it offers.
Sample applications
The NDK includes sample Android applications that illustrate how to use native code in your Android applications. For more information, see Using the Sample Applications.
Click to expand...
Click to collapse
You can download the Android NDK: here
just waiting for it ! Good job!
Kind of makes sense now why the binary 3D driver broke from 1.6->2.0
and i most care about whether our G1 are supported ?!
huhaifan1 said:
and i most care about whether our G1 are supported ?!
Click to expand...
Click to collapse
well if the rumors about every single android device being upgraded to 2.1 in the US are true then id think so. we already have partial 3D working, so i think with this release the devs will be able to make it work
Except the chip in the G1 is not built for 2.0.
IMHO, if you'll see 2.0 drivers on the G1 (or Hero) it'll be software. But I'd love to be proven wrong, so please do.
Chainfire said:
Except the chip in the G1 is not built for 2.0.
IMHO, if you'll see 2.0 drivers on the G1 (or Hero) it'll be software. But I'd love to be proven wrong, so please do.
Click to expand...
Click to collapse
from what ive read on androidspin and phandroid, some phones will receive a slimmer 2.1 that doesnt support lwp OTA. some devs have found ways to use software libs and kernel edits to use partial 3D acceleration in some 2.1 roms. Firerat and Case_ managed to get 3D and Youtube HD working on Canon's Roms. The next OpenEclair should have fully working 3D, lwps, and video according to wesgarner, so i think that this upcoming release mentioned in the article will provide more tools for our devs to use on the G1.
but when EXACTLY - like DATE - are they coming!?
chim4ira312 said:
but when EXACTLY - like DATE - are they coming!?
Click to expand...
Click to collapse
The NDK is available now, maybe the devs should look into it:
http://developer.android.com/intl/de/sdk/ndk/index.html
What is the Android NDK?
The Android NDK is a toolset that lets you embed components that make use of native code in your Android applications.
Android applications run in the Dalvik virtual machine. The NDK allows you to implement parts of your applications using native-code languages such as C and C++. This can provide benefits to certain classes of applications, in the form of reuse of existing code and in some cases increased speed.
The NDK provides:
* A set of tools and build files used to generate native code libraries from C and C++ sources
* A way to embed the corresponding native libraries into application package files (.apks) that can be deployed on Android devices
* A set of native system headers and libraries that will be supported in all future versions of the Android platform, starting from Android 1.5
* Documentation, samples, and tutorials
This release of the NDK supports the ARMv5TE machine instruction set and provides stable headers for libc (the C library), libm (the Math library), OpenGL ES (3D graphics library), the JNI interface, and other libraries, as listed in the section below.
The NDK will not benefit most applications. As a developer, you will need to balance its benefits against its drawbacks; notably, using native code does not result in an automatic performance increase, but does always increase application complexity. Typical good candidates for the NDK are self-contained, CPU-intensive operations that don't allocate much memory, such as signal processing, physics simulation, and so on. Simply re-coding a method to run in C usually does not result in a large performance increase. The NDK can, however, can be an effective way to reuse a large corpus of existing C/C++ code.
Please note that the NDK does not enable you to develop native-only applications. Android's primary runtime remains the Dalvik virtual machine.
Contents of the NDK
Development tools
The NDK includes a set of cross-toolchains (compilers, linkers, etc..) that can generate native ARM binaries on Linux, OS X, and Windows (with Cygwin) platforms.
It provides a set of system headers for stable native APIs that are guaranteed to be supported in all later releases of the platform:
* libc (C library) headers
* libm (math library) headers
* JNI interface headers
* libz (Zlib compression) headers
* liblog (Android logging) header
* OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers
* A Minimal set of headers for C++ support
The NDK also provides a build system that lets you work efficiently with your sources, without having to handle the toolchain/platform/CPU/ABI details. You create very short build files to describe which sources to compile and which Android application will use them — the build system compiles the sources and places the shared libraries directly in your application project.
Important: With the exception of the libraries listed above, native system libraries in the Android platform are not stable and may change in future platform versions. Your applications should only make use of the stable native system libraries provided in this NDK.
Documentation
The NDK package includes a set of documentation that describes the capabilities of the NDK and how to use it to create shared libraries for your Android applications. In this release, the documentation is provided only in the downloadable NDK package. You can find the documentation in the <ndk>/docs/ directory. Included are these files:
* INSTALL.TXT — describes how to install the NDK and configure it for your host system
* OVERVIEW.TXT — provides an overview of the NDK capabilities and usage
* ANDROID-MK.TXT — describes the use of the Android.mk file, which defines the native sources you want to compile
* APPLICATION-MK.TXT — describes the use of the Application.mk file, which describes the native sources required by your Android application
* HOWTO.TXT — information about common tasks associated with NDK development.
* SYSTEM-ISSUES.TXT — known issues in the Android system images that you should be aware of, if you are developing using the NDK.
* STABLE-APIS.TXT — a complete list of the stable APIs exposed by headers in the NDK.
* CPU-ARCH-ABIS.TXT — a description of supported CPU architectures and how to target them.
* CHANGES.TXT — a complete list of changes to the NDK across all releases.
Additionally, the package includes detailed information about the "bionic" C library provided with the Android platform that you should be aware of, if you are developing using the NDK. You can find the documentation in the <ndk>/docs/system/libc/ directory:
* OVERVIEW.TXT — provides an overview of the "bionic" C library and the features it offers.
Sample applications
The NDK includes sample Android applications that illustrate how to use native code in your Android applications. For more information, see Using the Sample Applications.
Click to expand...
Click to collapse
This doesn't at all in any way say that we're getting 2.0 drivers for the G1. All it's saying is that phones with 2.0 will be able to directly access ES2.0 functions.
Which, really, has absolutely nothing to do with the driver issue we face. Unless you can point out something I missed.
Gary13579 said:
This doesn't at all in any way say that we're getting 2.0 drivers for the G1. All it's saying is that phones with 2.0 will be able to directly access ES2.0 functions.
Which, really, has absolutely nothing to do with the driver issue we face. Unless you can point out something I missed.
Click to expand...
Click to collapse
sorry i probably misunderstood the article =/
im still not very experienced with android development, i thought this would help the devs a little bit with getting 3d working (since theyre already doing that without official drivers)
I did indeed get a humongous boner on reading this earlier. It was enhanced by 3D.
My favorite part about this is the new ability to use openGL in apps! That means the entire face of our OS is going to change.
...and speaking of OS... Qualcom/htc just released a new radio for the G1. The G1 To this day holds over 50% of the android installed user base. There is no doubt the G1 will live beyond 1.X
bleah writing games in opengl es 1.0 was hard enough...
Gary13579 said:
This doesn't at all in any way say that we're getting 2.0 drivers for the G1. All it's saying is that phones with 2.0 will be able to directly access ES2.0 functions.
Which, really, has absolutely nothing to do with the driver issue we face. Unless you can point out something I missed.
Click to expand...
Click to collapse
agreed
the binary still needs to be available
as far as I can see with have two
the open source one
/system/lib/egl/libGLES_android.so
and the proprietary
/system/lib/egl/libGLES_qcom.so
the quoted text in the OP is basically stating that an Android developer will now be able to mix in a little c/c++ to get direct native access to opengl es
functions
Firerat said:
agreed
the binary still needs to be available
as far as I can see with have two
the open source one
/system/lib/egl/libGLES_android.so
and the proprietary
/system/lib/egl/libGLES_qcom.so
the quoted text in the OP is basically stating that an Android developer will now be able to mix in a little c/c++ to get direct native access to opengl es
functions
Click to expand...
Click to collapse
sorry guys like i said i misunderstood =/ i was hoping the NDK would provide some help but i now see its pretty much for apps, facepalm >_<;
edited the title to avoid further confusion lol
speedysilwady said:
edited the title to avoid further confusion lol
Click to expand...
Click to collapse
Was just about to do that, thanks .
I'm sure we'll get drivers eventually, either hacked or official. Just a matter of time.
Gary13579 said:
Was just about to do that, thanks .
I'm sure we'll get drivers eventually, either hacked or official. Just a matter of time.
Click to expand...
Click to collapse
haha no problem, glad to see i have a moderator type mentality. lol
yeah im sure we will, theyre already partially working, so its only a matter of time hopefully
What Chainfire said is that there is no hardware support for OpenGl ES 2.0 in msm720x chips. (refs here, sorry couldn't find official spec datasheet).
So even if 2.0 is supported, it will only be through software drivers implementation, which means really slow rendering.
spocky12 said:
What Chainfire said is that there is no hardware support for OpenGl ES 2.0 in msm720x chips. (refs here, sorry couldn't find official spec datasheet).
So even if 2.0 is supported, it will only be through software drivers implementation, which means really slow rendering.
Click to expand...
Click to collapse
Thats right.
But most Games will probably/hopefully still be written for OpenGL1.1. (Because of the userbase whatsoever)
For a start, but to focus at the future, too bad, the G1 will get old sooner

[Q] Running a C++ binary

So this is probably a silly question.
I have this rather complicated app that would be a heck of a lot of work to convert to Java.
It runs in the command line and works fine in Linux.
Trying to run it fails, but x86 bytecode probably isn't very ARM friendly.
Is there a specific way I need to compile the application?
Is it even possible to run it from a console emulator?
Thanks.
Try Android NDK
I am also new to Android Dev ( 15+ years Linux, 10+ years Java, etc.)
I am not an expert but for your purposes you need the "Android NDK" in addition to the "Android SDK" that most developers utilize.
"The Android NDK is a toolset that lets you embed components that make use of native code in your Android applications.
Android applications run in the Dalvik virtual machine. The NDK allows you to implement parts of your applications using native-code languages such as C and C++. "
Basically the tools are needed to cross compile C++ source code for the target ARM environment.
I am prevented from posting the download URL for some bizarre reason, but it is listed under "Native Development Tools" on the left side of the web page for the standard "Android SDK" download.
Yeah that's because you are new. It's a system to prevent spammers from posting URLs.
When you have a couple of posts the restriction will disappear
Anyway; found it, seems to be what I'm looking for.
I'll check it out in the morning.
Big thanks
Dmitry Moskalchukhas written a patch for the ndk to better support c++ see crytax dot net there are posts on google groups android-ndk talking about it
Thxs for the info. I was aware that the NDK did not include all of the libs that desktop Linux/UNIX developers expect. The suggested patched version adds the STL libs back in.
Sent from my PC36100 using XDA App
There are A LOT of libraries missing
I guess I'll just keep it a hosted app.
Thanks for all the input

[Q] What existing FOSS applications would you like to see available on Android?

As I sit here at 2:56am, pondering the wonders of the universe, I had a thought:
"Of all the existing applications that run on Linux, which ones do you really wish you had on your phone?"
The main ones I want to see are mostly development related and items that will let me diagnose issues on my device. The idea of utilising the plethora of existing quick hacks and useful interpreted applications (i.e. Python/Perl based) which people have put out over the years really appeals to me.
My list follows
Python 2.6+ and supporting utilities.
UI libraries such as QT and GTK.
Perl 5.10+ with full CPAN access.
Networking libraries (i.e. pcap related).
System profiling utilities (i.e. strace, lsof, valgrind).
Common daemons (i.e. cups)
Choice of package management utilities.
What other open source applications would you find useful?
Lain Hiro.P Moto said:
UI libraries such as QT and GTK.
Click to expand...
Click to collapse
http://code.google.com/p/android-lighthouse/
Lain Hiro.P Moto said:
Python 2.6+ and supporting utilities.
Perl 5.10+ with full CPAN access.
Click to expand...
Click to collapse
http://code.google.com/p/android-scripting/
They aren't perfect, but quite good and will be probably better in the future.

How to Program Own Apps in Android 4.4.4 KitKat

I am a programmer who has programmed in x86 Assembler, Visual C++ under Windows and DOS.
I need to be able to do own applications for Android KitKat 4.4.4
I need any help and information such as manuals, books, lists of commands, lists of functions, C compiler or, best, Assembler compilers for a given processor, etcetera.
I would like to code in Assembler. I guess I need an Assembler for a given processor and cell phone. In case not possible, I need a C compiler for Android 4.4.4 KitKat. I need the basic rules on how to code for this OS as well as the OS calls which I can use, as well as a description of function libraries which may come with the C compiler.
I prefer pure C than C++ or Java.
I have briefly searched the Internet with various key words and I have not been able to find anything relevant.
Please, does anyone have any information where I can get anything helpful.
I am totally new to this OS and I do not even know the shell commands. I do not have much information of the shell, although I have found a basic list on this forum and I use ls and ? and go by the name as a dumb fool.
Please, advise.
While Android is in Java, it also allows you to run C/C++ native code.
Search "Android NDK" and you will find the relevant documentation.
Arws Apps said:
While Android is in Java, it also allows you to run C/C++ native code.
Search "Android NDK" and you will find the relevant documentation.
Click to expand...
Click to collapse
Thanks. I have tried NDK. I am not sure whether I have installed this correctly but I would keep this.
Because NDK is hardware specific and I am not sure whether and how much Moto E XT1023 and others are supported, I have installed Android Studio 1.2 ad started with XML and Java. I have done similar things with HTML and Java for web sites. I would use XML as much as I can and Java only to get and set some variables, then I would use C for programming and then I would set Java variables and methods. I am not very happy with Java but there is not any other way for now. Hopefully, in the future, they would make XML a real language with all the resources available, functions and methods.
At least Java has a very C-like syntax, so in general it shouldn't be that difficult. In some sense it would even be easier (no memory management).
Arws Apps said:
At least Java has a very C-like syntax, so in general it shouldn't be that difficult. In some sense it would even be easier (no memory management).
Click to expand...
Click to collapse
Yes. You are right. I would prefer, however, a pure ANSI C. This can be done either as an interpreter to be hardware independent or as a compiler upon launch, the system would have a compiler, the user would download only the ASCI text. Upon launch, the compiler would be called first to compile and then the application can be launched. Then, the user can either keep the .exe or keep just the ASCI text, in which case, new compilation has to be done with every launch. A compilation would normally take one or a few seconds only for normal applications.

Categories

Resources